Skip to main content

Storage Capacity of Kernel Associative Memories

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2002 (ICANN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2415))

Included in the following conference series:

Abstract

This contribution discusses the thermodynamic phases and storage capacity of an extension of the Hopfield-Little model of associative memory via kernel functions. The analysis is presented for the case of polynomial and Gaussian kernels in a replica symmetry ansatz. As a general result we found for both kernels that the storage capacity increases considerably compared to the Hopfield-Little model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. F. Abbot, Y. Arian, “Storage capacity of generalized networks”, Physical Review A, 36(10), pp 5091–5094, November 1987.

    Google Scholar 

  2. D. J. Amit, “Modeling Brain Function”, Cambridge University Press, Cambridge, USA, 1989.

    MATH  Google Scholar 

  3. D. J. Amit, H. Gutfreund, H. Sompolinsky, “Spin glass models of neural networks”, Physical Review A, 32, 1007, 1985.

    Article  MathSciNet  Google Scholar 

  4. B. Caputo, H. Niemann, “From Markov Random Fields to Associative Memories and Back: Spin Glass Markov Random Fields”, Proc. of IEEE workshop on Statistical and Computational Theories of Vision, Vancouver, CA, July 2001.

    Google Scholar 

  5. E. Gardner, “Multiconnected neural network models”, Journal of Physics A, 20, pp 3453–3464, 1987.

    Article  Google Scholar 

  6. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. Sci. USA, Vol. 79, pp 2554–2558, April 1982.

    Google Scholar 

  7. W. A. Little, G. L. Shaw, “Analytical study of the memory storage capacity of a neural network”, Math. Biosci., 39, 281, 1981.

    Article  Google Scholar 

  8. M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore, 1987.

    MATH  Google Scholar 

  9. V. Vapnik, Statistical learning theory, J. Wiley, New York, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caputo, B., Niemann, H. (2002). Storage Capacity of Kernel Associative Memories. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-46084-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44074-1

  • Online ISBN: 978-3-540-46084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics