Bézier surfaces of minimal area

  • C. Cosín
  • J. Monterde
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2330)


There are minimal surfaces admitting a Bézier form. We study the properties that the associated net of control points must satisfy. We show that in the bicubical case all minimal surfaces are, up to an affine transformation, pieces of the Enneper’s surface.


Control Point Minimal Surface Minimal Area Border Point Plateau Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Bernstein, Sur les surfaces définies au moyen de leur courboure moyenne ou totale, Ann. Sci. l’Ecole Norm. Sup., 27, 233–256 (1910).Google Scholar
  2. 2.
    S. Bernstein, Sur les equations du calcul des variations, Ann. Sci. l’Ecole Norm. Sup., 29, 431–482 (1912).Google Scholar
  3. 3.
    G. Farin, Curves and surfaces for computer aided geometric design. A practical guide, Morgan Kaufmann, 5th. ed. (2001).Google Scholar
  4. 4.
    G. Farin, D. HansfordDiscrete Coons patches. CAGD 16. 691–700 (1999).zbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Greiner, Blending Surfaces with Minimal Curvature, in W. Straßer and F. Wahl (eds.). Proc. Dagstuhl Workshop Graphics and Robotics, pp. 163–174, Springer, 1994Google Scholar
  6. 6.
    G. Greiner, Variational Design and Fairing of Spline Surfaces, in Computer Graphics Forum (Proc. Eurographics’ 94), 143–154, 1994.Google Scholar
  7. 7.
    H. P. Moreton, C. H. Séquin, Functional Minimization for Fair Surface Design, preprint, (2001).Google Scholar
  8. 8.
    J. C. C. Nitsche, Lectures on minimal surfaces, vol. 1, Cambridge Univ. Press, Cambridge (1989).zbMATHGoogle Scholar
  9. 9.
    K. Polthier, W. Rossman, Discrete constant mean curvature and their index, preprint (2001).Google Scholar
  10. 10.
    R. Osserman, A survey of minimal surfaces, Dover Publ., (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • C. Cosín
    • 1
  • J. Monterde
    • 2
  1. 1.Dep. Matemàtica AplicadaUniversitat Autònoma de BarcelonaBellaterra BarcelonaSpain
  2. 2.Dep. de Geometria i TopologiaUniversitat de ValénciaBurjassot ValènciaSpain

Personalised recommendations