Advertisement

A Projection Method for a Rational Eigenvalue Problem in Fluid-Structure Interaction

  • Heinrich Voss
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2330)

Abstract

In this paper we consider a rational eigenvalue problem governing the vibrations of a tube bundle immersed in an inviscid compressible fluid. Taking advantage of eigensolutions of appropriate sparse linear eigenproblems the large nonlinear eigenvalue problem is projected to a much smaller one which is solved by inverse iteration.

References

  1. 1.
    Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., editors: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000zbMATHGoogle Scholar
  2. 2.
    Conca, C., Planchard, J., Vanninathan, M.: Existence and location of eigenvalues for fluid-solid structures. Comput. Meth. Appl. Mech. Engrg. 77 (1989) 253–291zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duffin, R.J.: A minmax theory for overdamped networks. J. Rat. Mech. Anal. 4 (1955) 221–233MathSciNetGoogle Scholar
  4. 4.
    Hadeler, K.P.: Variationsprinzipien bei nichtlinearen Eigenwertaufgaben. Arch. Rat. Mech. Anal. 30 (1968) 297–307zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hadeler, K.P.: Nonlinear eigenvalue problems. Internat. Series Numer. Math. 27 111–129Google Scholar
  6. 6.
    Kublanovskaya, V.N.: On an application of Newton’s method to the determination of eigenvalues of λ-matrices. Dokl. Akad. Nauk. SSR 188 (1969) 1240–1241Google Scholar
  7. 7.
    Kublanovskaya, V.N.: On an approach to the solution of the generalized latent value problem for λ-matrices. SIAM. J. Numer. Anal. 7 (1970) 532–537CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Neumaier, A.: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22 (1985) 914–923zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rogers, E.H.: A minmax theory for overdamped systems. Arch. Rat. Mech. Anal. 16 (1964) 89–96zbMATHCrossRefGoogle Scholar
  10. 10.
    Rogers, E.H.: Variational properties of nonlinear spectra. J. Math. Mech. 18 (1968) 479–490zbMATHMathSciNetGoogle Scholar
  11. 11.
    Ruhe, A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10 (1973) 674–689zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Voss, H.: Computation of eigenvalues of nonlinear eigenvalue problems. pp. 147–157 in G.R. Joubert, editor: Proceedings of the Seventh South African Symposium on Numerical Mathematics. University of Natal, Durban 1981Google Scholar
  13. 13.
    Voss, H.: A rational spectral problem in fluid—solid vibration. In preparationGoogle Scholar
  14. 14.
    Voss, H., Werner, B.: A minimax principle for nonlinear eigenvalue problems with application to nonoverdamped systems. Math. Meth. Appl. Sci. 4 (1982) 415–424zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Werner, B.: Das Spektrum von Operatorenscharen mit verallgemeinerten Rayleighquotienten. Arch. Rat. Mech. Anal. 42 (1971) 223–238zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Heinrich Voss
    • 1
  1. 1.Section of MathematicsTU Hamburg-HarburgHamburgGermany

Personalised recommendations