Interactive versus Symbolic Approaches to Plane Loci Generation in Dynamic Geometry Environments

  • Francisco Botana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2330)


This paper reviews current approaches to plane loci generation within dynamic geometry environments. Such approaches are classified as interactive, when just a plot of the locus is shown, and symbolic, if, in addition to plotting the locus, its equation is also given. It is shown how symbolic approaches outperform the interactive ones when dealing with loci which are algebraic curves. Additionally, two experimental improvements are reported: i) an efficient computer algebra system allows symbolically generated loci to behave as dynamic objects, and ii) a general purpose computer algebra system is used to remove spurious parts of some loci.


Algebraic Curf Computer Algebra System Dynamic Geometry Dynamic Geometry Software Symbolic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Botana, F., Valcarce, J. L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education, to appear (2002)Google Scholar
  2. 2.
    Botana, F., Valcarce, J. L.: Cooperation between a dynamic geometry environment and a computer algebra system for geometric discovery. In V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Computer Algebra and Scientific Computing CASC 2001, Springer, Berlin, 63–74 (2001)Google Scholar
  3. 3.
    Botana, F., Valcarce, J. L.: A software tool for investigation of plane loci. Technical Report, University of Vigo, Pontevedra (2001)Google Scholar
  4. 4.
    Buchberger, B.: Groebner Bases: an Algorithmic Method in Polynomial Ideal Theory. In N.K. Bose, Multidimensional systems theory, Reidel, Dordrecht, 184–232 (1985)Google Scholar
  5. 5.
    Capani, A., Niesi, G.L. Robbiano: CoCoA, a system for doing Computations in Commutative Algebra. Available via anonymous ftp from:
  6. 6.
    Chou, S. C: Proving Elementary Geometry Theorems Using Wu’s Algorithm. Automated Theorem Proving: After 25 years, Contemporary Mathematics, AMS, 29, 243–286 (1984)Google Scholar
  7. 7.
    Gao, X. S., Zhang, J. Z., Chou, S. C: Geometry Expert. Nine Chapters Publ. Taiwan (1998)Google Scholar
  8. 8.
    Guzman, M.: An extension of the Wallace—Simson theorem: projecting in arbitrary directions. American Mathematical Monthly, 106(6), 574–580 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jackiw, N.: The Geometer’s Sketchpad. Key Curriculum Press, Berkeley (1997)Google Scholar
  10. 10.
    Kapur, D.: Geometry theorem proving using Hubert’s Nullstellensatz. In Proc. SYMSAC’86, Waterloo, 202–208, ACM Press (1986)Google Scholar
  11. 11.
    Kapur, D.: A refutational approach to geometry theorem proving. Artificial Intelligence, 37, 61–94 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kapur, D.: Using Groebner bases to reason about geometry problems. Journal of Symbolic Computation, 2, 399–408 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    King, J., Schattschneider, D.: Geometry Turned On. MAA, Washington (1997)zbMATHGoogle Scholar
  14. 14.
    Kortenkamp, U.: Foundations of dynamic geometry. Ph. D. Thesis, ETH, Zurich (1999)Google Scholar
  15. 15.
    Kutzler, B., Stifter, S.: On the application of Buchberger’s algorithm to automated geometry theorem proving. Journal of Symbolic Computation, 2, 389–397 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Laborde, J. M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)Google Scholar
  17. 17.
    Recio, T., Vélez, M. P.: Automatic discovery of theorems in elementary geometry. Journal of Automated Reasoning, 23, 63–82 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Richter-Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)Google Scholar
  19. 19.
    Roanes-Macías, E., Roanes-Lozano, E.: Búsqueda automática de lugares geométricos. Proceedings Spanish Educ. Session IMACS—ACA’ 99, Boletín Sociedad Puig Adam de Prof. de Matemáticas, 53, 67–77 (1999)Google Scholar
  20. 20.
    Roanes-Macías, E., Roanes-Lozano, E.: Automatic determination of geometric loci. 3D—extension of Simson—Steiner theorem. Proceedings of Artificial Intelligence and Symbolic Computation 2000, Lecture Notes in Artificial Intelligence, 1930, 157–173 (2000)Google Scholar
  21. 21.
    Valcarce, J. L., Botana, F.: Lugares. Manual de Referencia. Technical Report, University of Vigo, Pontevedra (2001) Google Scholar
  22. 22.
    Wolfram, S.: The Mathematica book. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  23. 23.
    Wu, W. T.: Mechanical Theorem Proving in Geometries. Springer, Vienna (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Francisco Botana
    • 1
  1. 1.Departamento de Matemática AplicadaUniversidad de VigoPontevedraSpain

Personalised recommendations