Advertisement

Heavy Tails: The Effect of the Service Discipline

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2324)

Abstract

This paper considers the M/G/1 queue with regularly varying service requirement distribution. It studies the effect of the service discipline on the tail behavior of the waiting- or sojourn time distribution, demonstrating that different disciplines may lead to quite different tail behavior. The orientation of the paper is methodological: We outline three different methods of determining tail behavior, illustrating them for service disciplines like FCFS, Processor Sharing and LCFS.

Keywords

Sojourn Time Busy Period Heavy Tail Service Requirement Service Discipline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abate, J., Whitt, W. (1997). Asymptotics for M/G/1 low-priority waiting-time tail probabilities. Queueing Systems 25, 173–233.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anantharam, V. (1988). How large delays build up in a GI/G/1 queue. Queueing Systems 5, 345–368.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Anantharam, V. (1999). Scheduling strategies and long-range dependence. Queueing Systems 33, 73–89.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baccelli, F., Foss, S. (2001). Moments and tails in monotone-separable stochastic networks. Research Report RR 4197, INRIA Rocquencourt.Google Scholar
  5. 5.
    Beran, J., Sherman, R., Taqqu, M.S., Willinger, W. (1995). Long-range dependence in variable-bit-rate video traffic. IEEE Trans. Commun. 43, 1566–1579.CrossRefGoogle Scholar
  6. 6.
    Bingham, N.H., Doney, R.A. (1974). Asymptotic properties of super-critical branching processes. I: The Galton-Watson process. Adv. Appl. Prob. 6, 711–731.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987). Regular Variation (Cambridge University Press, Cambridge, UK).zbMATHGoogle Scholar
  8. 8.
    Borst, S.C., Boxma, O.J., Jelenković, P.R. (2000). Coupled processors with regularly varying service times. In: Proc. Infocom 2000 Conference, Tel-Aviv, Israel, 157–164.Google Scholar
  9. 9.
    Borst, S.C., Boxma, O.J., Jelenković, P.R. (2000). Reduced-load equivalence and induced burstiness in GPS queues. Queueing Systems, to appear.Google Scholar
  10. 10.
    Borst, S.C., Boxma, O.J., Van Uitert, M.G.J. (2001). Two coupled queues with heterogeneous traffic. In: Teletraffic Engineering in the Internet Era, Proc. ITC-17, Salvador da Bahia, Brazil, eds. J. Moreira de Souza, N.L.S. da Fonseca, E.A. de Souza e Silva (North-Holland, Amsterdam), 1003–1014.Google Scholar
  11. 11.
    Borst, S.C., Boxma, O.J., Van Uitert, M.G.J. (2002). The asymptotic workload behavior of two coupled queues. CWI Report PNA-R0202. Submitted for publication.Google Scholar
  12. 12.
    Borst, S.C., Zwart, A.P. (2001). Fluid queues with heavy-tailed M/G/∞ input. SPOR-Report 2001-02, Department of Mathematics and Computer Science, Eindhoven University of Technology. Submitted for publication.Google Scholar
  13. 13.
    Boxma, O.J., Cohen, J.W. (2000). The single server queue: Heavy tails and heavy traffic. In: S elf-similar Network Traffic and Performance Evaluation, eds. K. Park, W. Willinger (Wiley, New York), 143–169.CrossRefGoogle Scholar
  14. 14.
    Boxma, O.J., Cohen, J.W., Deng, Q. (1999). Heavy-traffic analysis of the M/G/1 queue with priority classes. In: Teletraffic Engineering in a Competitive World, Proc. ITC-16, Edinburgh, UK, eds. P. Key, D. Smith (North-Holland, Amsterdam), 1157–1167.Google Scholar
  15. 15.
    Boxma, O.J., Deng, Q., Resing, J.A.C. (2000). Polling systems with regularly varying service and/or switchover times. Adv. Perf. Anal. 3, 71–107.Google Scholar
  16. 16.
    Boxma, O.J. Dumas, V. (1998). The busy period in the fluid queue. Perf. Eval. Review 26, 100–110.CrossRefGoogle Scholar
  17. 17.
    Cohen, J.W. (1973). Some results on regular variation for distributions in queueing and fluctuation theory. J. Appl. Prob. 10, 343–353.CrossRefzbMATHGoogle Scholar
  18. 18.
    Cohen, J.W. (1982). The Single Server Queue (North-Holland Publ. Cy., Amsterdam; revised edition).zbMATHGoogle Scholar
  19. 19.
    Cohen, J.W., Boxma, O.J. (1983). Boundary Value Problems in Queueing System Analysis (North-Holland Publ. Cy., Amsterdam).zbMATHCrossRefGoogle Scholar
  20. 20.
    Crovella, M., Bestavros, A. (1996). Self-similarity in World Wide Web Traffic: evidence and possible causes. In: Proc. ACM Sigmetrics’ 96, 160–169.Google Scholar
  21. 21.
    Deng, Q. (2001). The two-queue E/1 -L polling model with regularly varying service and/or switchover times. SPOR-Report 2001-09, Department of Mathematics and Computer Science, Eindhoven University of Technology.Google Scholar
  22. 22.
    Fayolle, G., Iasnogorodski, R. (1979). Two coupled processors: the reduction to a Riemann-Hilbert problem. Z. Wahrsch. Verw. Gebiete 47, 325–351.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York).zbMATHGoogle Scholar
  24. 24.
    Jelenković, P.R., Momcilović, P. (2002). Resource sharing with subexponential distributions. In: Proc. IEEE Infocom 2002, New York NY, USA, to appear.Google Scholar
  25. 25.
    Karamata, J. (1930). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4, 38–53.zbMATHGoogle Scholar
  26. 26.
    Kleinrock, L. (1976). Queueing Systems, Vol. II: Computer Applications (Wiley, New York).zbMATHGoogle Scholar
  27. 27.
    Klüppelberg, C. (1988). Subexponential distributions and integrated tails. J. Appl. Prob. 25, 132–141.zbMATHCrossRefGoogle Scholar
  28. 28.
    Konheim, A.G., Meilijson, I., Melkman, A. (1981). Processor sharing of two parallel lines. J. Appl. Prob. 18, 952–956.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V. (1994). On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2, 1–15.CrossRefGoogle Scholar
  30. 30.
    De Meyer, A., Teugels, J.L. (1980). On the asymptotic behaviour of the distribution and the service time in M/G/1. J. Appl. Prob. 17, 802–813.zbMATHCrossRefGoogle Scholar
  31. 31.
    Mikosch, T. (1999). Regular variation, subexponentiality and their applications in probability theory. EURANDOM Report 99-013.Google Scholar
  32. 32.
    Núñez-Queija, R.(2000). Processor-Sharing Models for Integrated-Services Networks. Ph.D. thesis, Eindhoven University of Technology, ISBN 90-646-4667-8 (also available from the author upon request).Google Scholar
  33. 33.
    Núñez-Queija, R. (2000). Sojourn times in a processor-sharing queue with service interruptions. Queueing Systems 34, 351–386.zbMATHCrossRefGoogle Scholar
  34. 34.
    Núñez-Queija, R. (2002). Queues with equally heavy sojourn time and service requirement distributions. CWI Report PNA-R0201. Submitted for publication.Google Scholar
  35. 35.
    Ott, T.J. (1984). The sojourn-time distribution in the M/G/1 queue with processor sharing. J. Appl. Prob. 21, 360–378.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Pakes, A.G. (1975). On the tails of waiting-time distributions. J. Appl. Prob. 12, 555–564.CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Parekh, A.K., Gallager, R.G. (1993). A generalized processor sharing approach to flow control in integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1, 344–357.CrossRefGoogle Scholar
  38. 38.
    Paxson, A., Floyd, S. (1995). Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw. 3, 226–244.CrossRefGoogle Scholar
  39. 39.
    Resnick, S., Samorodnitsky, G. (1999). Activity periods of an infinite server queue and performance of certain heavy-tailed fluid queues. Queueing Systems 33, 43–71.zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Sakata, M., Noguchi, S., Oizumi, J. (1971). An analysis of the M/G/1 queue under round-robin scheduling. Oper. Res. 19, 371–385.zbMATHCrossRefGoogle Scholar
  41. 41.
    Schrage, L.E., Miller, L.W. (1966). The queue M/G/1 with the shortest remaining processing time discipline. Oper. Res. 14, 670–684.zbMATHMathSciNetGoogle Scholar
  42. 42.
    Schassberger, R. (1984). A new approach to the M/G/1 processor sharing queue. Adv. Appl. Prob. 16, 802–813.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V. (1997). Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Netw. 5, 71–86.CrossRefGoogle Scholar
  44. 44.
    Wolff, R.W. (1989). Stochastic Modeling and the Theory of Queues (Prentice Hall, Englewood Cliffs).Google Scholar
  45. 45.
    Yashkov, S.F. (1983). A derivation of response time distribution for a M/G/1 processor-sharing queue. Prob. Control Inf. Theory 12, 133–148.zbMATHMathSciNetGoogle Scholar
  46. 46.
    Yashkov, S.F. (1987). Processor-sharing queues: Some progress in analysis. Queueing Systems 2, 1–17.zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Zwart, A.P. (1999). Sojourn times in a multiclass processor sharing queue. In: Teletraffic Engineering in a Competitive World, Proc. ITC-16, Edinburgh, UK, eds. P. Key, D. Smith (North-Holland, Amsterdam), 335–344.Google Scholar
  48. 48.
    Zwart, A.P. (2001). Queueing Systems with Heavy Tails. Ph.D. thesis, Eindhoven University of Technology.Google Scholar
  49. 49.
    Zwart, A.P. (2001). Tail asymptotics for the busy period in the GI/G/1 queue. Math. Oper. Res. 26, 485–493.zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Zwart, A.P., Borst, S.C., Mandjes, M. (2001). Exact asymptotics for fluid queues fed by multiple heavy-tailed On-Off flows. Ann. Appl. Prob., to appear. Shortened version in: Proc. Infocom 2001, Anchorage AK, USA, 279–288.Google Scholar
  51. 51.
    Zwart, A.P., Boxma, O.J. (2000). Sojourn time asymptotics in the M/G/1 processor sharing queue. Queueing Systems 35, 141–166.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Department of Mathematics & Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Bell LaboratoriesLucent TechnologiesMurray HillUSA

Personalised recommendations