Skip to main content

Generic Model Abstraction from Examples

  • Conference paper
  • First Online:
Book cover Sensor Based Intelligent Robots

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2238))

Abstract

The recognition community has long avoided bridging the representational gap between traditional, low-level image features and generic models. Instead, the gap has been eliminated by either bringing the image closer to the models, using simple scenes containing idealized, textureless objects, or by bringing the models closer to the images, using 3-D CAD model templates or 2-D appearance model templates. In this paper, we attempt to bridge the representational gap for the domain of model acquisition. Specifically, we address the problem of automatically acquiring a generic 2-D view-based class model from a set of images, each containing an exemplar object belonging to that class. We introduce a novel graph-theoretical formulation of the problem, and demonstrate the approach on real imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Agin and T. Binford. Computer description of curved objects. IEEE Transactions on Computers, C-25(4):439–449, 1976.

    Article  Google Scholar 

  2. R. Bergevin and M. D. Levine. Part decomposition of objects from single view line drawings. CVGIP: Image Understanding, 55(1):73–83, January 1992.

    Article  MATH  Google Scholar 

  3. I. Biederman. Human image understanding: Recent research and a theory. Computer Vision, Graphics, and Image Processing, 32:29–73, 1985.

    Article  Google Scholar 

  4. T. Binford. Visual perception by computer. In Proceedings, IEEE Conference on Systems and Control, Miami, FL, 1971.

    Google Scholar 

  5. D. Borges and R. Fisher. Class-based recognition of 3d objects represented by volumetric primitives. Image and Vision Computing, 15(8):655–664, 1997.

    Article  Google Scholar 

  6. R. Brooks. Model-based 3-D interpretations of 2-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2):140–150, 1983.

    Google Scholar 

  7. O. Camps, C. Huang, and T Kanungo. Hierarchical organization of appearance based parts and relations for object recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 685–691, Santa Barbara, CA, 1998.

    Google Scholar 

  8. D. Comaniciu and P. Meer. Robust analysis of feature spaces: Color image segmentation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 750–755, 1997.

    Google Scholar 

  9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms, chapter 25. The MIT Press, 1993.

    Google Scholar 

  10. S. Dickinson, R. Bergevin, I. Biederman, J.-O. Eklundh, A. Jain, R. Munck-Fairwood, and A. Pentland. Panel report: The potential of geons for generic 3-D object recognition. Image and Vision Computing, 15(4):277–292, April 1997.

    Article  Google Scholar 

  11. S. Dickinson, D. Metaxas, and A. Pentland. The role of model-based segmentation in the recovery of volumetric parts from range data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3):259–267, March 1997.

    Article  Google Scholar 

  12. S. Dickinson, A. Pentland, and A. Rosenfeld. A representation for qualitative 3-D object recognition integrating object-centered and viewer-centered models. In K. Leibovic, editor, Vision: A Convergence of Disciplines. Springer Verlag, New York, 1990.

    Google Scholar 

  13. S. Dickinson, A. Pentland, and A. Rosenfeld. From volumes to views: An approach to 3-D object recognition. CVGIP: Image Understanding, 55(2):130–154, 1992.

    Article  MATH  Google Scholar 

  14. S. Dickinson, A. Pentland, and A. Rosenfeld. 3-D shape recovery using distributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):174–198, 1992.

    Article  Google Scholar 

  15. David Eppstein. Finding the k shortest paths. SIAM J. Computing, 28(2):652–673, 1999.

    Article  MathSciNet  Google Scholar 

  16. G. Ettinger. Large hierarchical object recognition using libraries of parameterized model sub-parts. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pages 32–41, Ann Arbor, MI, 1988.

    Google Scholar 

  17. G.J. Ettinger. Hierarchical object recognition using libraries of parameterized model sub-parts. Technical Report 963, MIT Artificial Intelligence Laboratory, 1987.

    Google Scholar 

  18. R. Fairwood. Recognition of generic components using logic-program relations of image contours. Image and Vision Computing, 9(2):113–122, 1991.

    Article  Google Scholar 

  19. P. Felzenszwalb and D. Huttenlocher. Image segmentation using local variation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 98–104, Santa Barbara, CA, 1998.

    Google Scholar 

  20. F. Ferrie, J. Lagarde, and P. Whaite. Darboux frames, snakes, and superquadrics. In Proceedings, IEEE Workshop on Interpretation of 3D Scenes, pages 170–176, 1989.

    Google Scholar 

  21. F. Ferrie, J. Lagarde, and P. Whaite. Darboux frames, snakes, and super-quadrics: Geometry from the bottom up. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(8):771–784, 1993.

    Article  Google Scholar 

  22. D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell. Invariant descriptors for 3d object recognition and pose. IEEE PAMI, 13:971–992, October 1991.

    Google Scholar 

  23. R. Gould. Graph Theory, pages 170–172. The Benjamin/Cummings Publishing Company, Inc., 1988.

    Google Scholar 

  24. A. Gupta. Surface and volumetric segmentation of 3D objects using parametric shape models. Technical Report MS-CIS-91-45, GRASP LAB 128, University of Pennsylvania, Philadelphia, PA, 1991.

    Google Scholar 

  25. D. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image. International Journal of Computer Vision, 5(2):195–212, 1990.

    Article  Google Scholar 

  26. N Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple paths. Networks, 12:411–427, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Leonardis and H. Bischoff. Dealing with occlusions in the eigenspace approach. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pages 453–458, San Francisco, CA, June 1996.

    Google Scholar 

  28. A. Leonardis, F. Solina, and A. Macerl. A direct recovery of superquadric models in range images using recover-and-select paradigm. In Proceedings, Third European Conference on Computer Vision (Lecture Notes in Computer Science, Vol 800), pages 309–318, Stockholm, Sweden, May 1994. Springer-Ve

    Google Scholar 

  29. D. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Norwell, MA, 1985.

    Google Scholar 

  30. D. Marr and H. Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Royal Society of London, B 200:269–294, 1978.

    Article  Google Scholar 

  31. H. Murase and S. Nayar. Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 14:5–24, 1995.

    Article  Google Scholar 

  32. R. Nelson and A. Selinger. A cubist approach to object recognition. In Proceedings, IEEE International Conference on Computer Vision, Bombay, January 1998.

    Google Scholar 

  33. R. Nevatia and T. Binford. Description and recognition of curved objects. Artificial Intelligence, 8:77–98, 1977.

    Article  MATH  Google Scholar 

  34. A. Pentland. Perceptual organization and the representation of natural form. Artificial Intelligence, 28:293–331, 1986.

    Article  MathSciNet  Google Scholar 

  35. A. Pentland. Automatic extraction of deformable part models. International Journal of Computer Vision, 4:107–126, 1990.

    Article  Google Scholar 

  36. A. Pope and D. Lowe. Learning object recognition models from images. In Proceedings, IEEE International Conference on Computer Vision, pages 296–301, Berlin, May 1993.

    Google Scholar 

  37. N. Raja and A. Jain. Recognizing geons from superquadrics fitted to range data. Image and Vision Computing, 10(3):179–190, April 1992.

    Article  Google Scholar 

  38. C. Schmid and R. Mohr. Combining greyvalue invariants with local constraints for object recognition. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pages 872–877, San Francisco, CA, June 1996.

    Google Scholar 

  39. A. Shokoufandeh and S. Dickinson. Applications of bipartite matching to problems in object recognition. In Proceedings, ICCV Workshop on Graph Algorithms and Computer Vision (web proceedings: http://www.cs.cornell.edu/iccvgraph-workshop/papers.htm ), September 1999.

  40. A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker. Indexing using a spectral encoding of topological structure. In IEEE Conference on Computer Vision and Pattern Recognition, pages 491–497, Fort Collins, CO, June 1999.

    Google Scholar 

  41. K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and shape matching. International Journal of Computer Vision, 30:1–24, 1999.

    Google Scholar 

  42. F. Solina and R. Bajcsy. Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):131–146, 1990.

    Article  Google Scholar 

  43. D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global deformations: Deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):703–714, 1991.

    Article  Google Scholar 

  44. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

    Article  Google Scholar 

  45. Markus Weber, M. Welling, and Pietro Perona. Unsupervised learning of models for recognition. In European Conference on Computer Vision, volume 1, pages 18–32, 2000.

    Google Scholar 

  46. P.H. Winston. Learning structural descriptions from examples. In The Psychology of Computer Vision, chapter 5, pages 157–209. McGraw-Hill, 1975.

    Google Scholar 

  47. K. Wu and M. Levine. Recovering parametric geons from multiview range data. In Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pages 159–166, Seattle, WA, June 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keselman, Y., Dickinson, S. (2002). Generic Model Abstraction from Examples. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45993-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43399-6

  • Online ISBN: 978-3-540-45993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics