Amino Acid Production Processes

  • Masato Ikeda
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 79)


With the exploitation of new uses and the growing markets of amino acids, amino acid production technology has made large progress during the latter half of the 20th century. Fermentation technology has played crucial roles in this progress, and currently the fermented amino acids represent chief products of biotechnology in both volume and value. This area is highly competitive in the world market and process economics are of primary importance. For cost-effective production, many technologies have been developed to establish high-productive fermentation and recovery processes. The producer organisms used in large-scale, well-established processes have been developed to a high level of production efficiency. The tools of genetic engineering of amino acid-producing organisms have been well developed and are now being applied for enlargement of biosynthetic and transport capacity, which is beginning to have a great impact on the amino acid industry. Furthermore, the rapid strides in genome analysis are bound to revolutionize the strain improvement methodology.


Amino acid Fermentation Metabolic engineering Transport engineering Corynebacterium glutamicum Genome information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ikeda K (1908) J Tokyo Chem Soc 30:820Google Scholar
  2. 2.
    Kinoshita S, Udaka S, Shimono M (1957) J Gen Appl Microbiol 3:193CrossRefGoogle Scholar
  3. 3.
    Nakayama K, Kitada S, Kinoshita S (1961) J Gen Appl Microbiol 7:145CrossRefGoogle Scholar
  4. 4.
    The Japan Essential Amino Acids Association, Inc (1996)Google Scholar
  5. 5.
    Sano K, Yokozeki K, Tamura F, Yasuda N, Noda I, Mitsugi K (1977) Appl Environ Microbiol 34:806Google Scholar
  6. 6.
    Calmes M, Daunis J (1999) Amino Acids 16:215CrossRefGoogle Scholar
  7. 7.
    Esaki N, Nakamori S, Kurihara T, Furuyoshi S, Soda K (1996) Enzymology of amino acid production. In: Roehr M (ed) Biotechnology, 2nd edn, vol. 6: Products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, p 503Google Scholar
  8. 8.
    Chibata I, Tosa T, Sato T (1986) Aspartic acid. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Elsevier, Amsterdam Oxford New York Tokyo, p 144Google Scholar
  9. 9.
    Chibata I, Tosa T, Kakimoto T (1986) Alanine. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Elsevier, Amsterdam Oxford New York Tokyo, p 224Google Scholar
  10. 10.
    Sato T, Takamatsu S, Yamamoto K, Umemura I, Tosa T, Chibata I (1982) Enzyme Eng 6:271Google Scholar
  11. 11.
    Hodgson J (1994) Bio/Technology 12:152CrossRefGoogle Scholar
  12. 12.
    Sikyta B (1983) Methods in industrial microbiology. Ellis Horwood, ChichesterGoogle Scholar
  13. 13.
    Buckland BC, Lilly MD (1993) Fermentation: an overview. In: Stephanopoulos G (ed) Biotechnology, 2nd edition, vol. 3: Bioprocessing. VCH Verlagsgesellschaft mbH, Weinheim, p 7Google Scholar
  14. 14.
    Einsele A (1978) Proc Biochem 7:1Google Scholar
  15. 15.
    Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schwedwe T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, MacFarlane C, Nienow A, Fuchs L, Kovacs T, Revstedt J, Trägårdh C, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Struder F, Lin HY, Neubauer P, Riemschneider S, van der Lans R, Luyben K, van der Schot F, Vrabel P, Manelius Å (1998) In: Azevedo SF, Ferreira EC, Luyben KCAM, Osseweijer P (eds) 2nd European Symposium on Biochemical Engineering Science, Portugal, p 7Google Scholar
  16. 16.
    Schilling BM, Pfeffele W, Backmann B, Leuchtenberger W, Deckwer W-D (1999) Biotechnol Bioeng 64:599CrossRefGoogle Scholar
  17. 17.
    Yamane T, Shimizu S (1984) Fed-batch techniques in microbial processes. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin Heidelberg New York, p 147Google Scholar
  18. 18.
    Konstantinov KB, Nishio N, Yoshida T (1990) J Ferment Bioeng 70:253CrossRefGoogle Scholar
  19. 19.
    Konstantinov KB, Nishio N, Seki T, Yoshida T (1991) J Ferment Bioeng 71:350CrossRefGoogle Scholar
  20. 20.
    Ikeda M, Katsumata R (1999) Appl Environ Microbiol 65:2497Google Scholar
  21. 21.
    Srinivasan VR, Summers RJ (1981) Continuous culture in the fermentation industry. In: Calcott PH (ed) Continuous cultures of cells. CRC Press, Florida, p 97Google Scholar
  22. 22.
    Aeschlimann A, Di Stasi L, von Stockar U (1990) Enzyme Microbiol Technol 12:926CrossRefGoogle Scholar
  23. 23.
    Miura A, Yoshida T, Matsuno T, Hashida W, Taguchi H, Otake T, Teramoto S (1963) J Ferment Technol 41:275Google Scholar
  24. 24.
    Choi YJ, Tribe DE (1982) Biotechnol Lett 4:223CrossRefGoogle Scholar
  25. 25.
    Park NH, Rogers PL (1986) Chem Eng Commun 45:185CrossRefGoogle Scholar
  26. 26.
    Toma M, Svinka J, Ruklisa MP, Sakse A, Baburin LA (1984) Prikl Biokhim Mikrobiol 20:95Google Scholar
  27. 27.
    Fujimura M, Kato J, Tosa T, Chibata I (1984) Appl Microbiol Biotechnol 19:79CrossRefGoogle Scholar
  28. 28.
    Azuma T, Nakanishi T, Sugimoto M (1988) J Ferment Technol 3:279CrossRefGoogle Scholar
  29. 29.
    Azuma T, Nakanishi T (1988) J Ferment Technol 3:285CrossRefGoogle Scholar
  30. 30.
    Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T (1989) Appl Microbiol Biotechnol 32:269CrossRefGoogle Scholar
  31. 31.
    Okamoto K, Kino K, Ikeda M (1997) Biosci Biotechnol Biochem 61:1877Google Scholar
  32. 32.
    Hashimoto S, Katsumata R (1999) Appl Environ Microbiol 65:2781Google Scholar
  33. 33.
    Ishizaki A, Takasaki S, Furuta Y (1993) J Ferment Bioeng 76:316CrossRefGoogle Scholar
  34. 34.
    Hirose T, Tsuruta M, Tamura K, Uehara Y, Miwa H (1994) US Patent 5 362 635Google Scholar
  35. 35.
    Coello N, Pan JG, Lebeault JM (1992) Appl Microbiol Biotechnol 38:34Google Scholar
  36. 36.
    Coello N, Pan JG, Lebeault JM (1992) Appl Microbiol Biotechnol 38:259Google Scholar
  37. 37.
    Oh N-S. Sernetz M (1993) Appl Microbiol Biotechnol 39:691CrossRefGoogle Scholar
  38. 38.
    Lee H-W, Pan J-G, Lebefault J-M (1995) Appl Microbiol Biotechnol 43:1019CrossRefGoogle Scholar
  39. 39.
    Oki T, Kitai A, Kouno K, Ozaki A (1973) J Gen Appl Microbiol 19:79CrossRefGoogle Scholar
  40. 40.
    Motoyama H, Anazawa H, Katsumata R, Araki K, Teshiba S (1993) Biosci Biotechnol Biochem 57:82Google Scholar
  41. 41.
    Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS (1990) Appl Environ Microbiol 56:963Google Scholar
  42. 42.
    Suzuki M, Berglund A, Unden A, Heden CG (1977) J Ferment Technol 55:466Google Scholar
  43. 43.
    Yamada H, Morinaga Y, Tani Y (1982) Agric Biol Chem 46:47Google Scholar
  44. 44.
    Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) Appl Microbiol Biotechnol 39:427CrossRefGoogle Scholar
  45. 45.
    Okamoto K, Ikeda M (2000) J Biosci Bioeng 89:87CrossRefGoogle Scholar
  46. 46.
    Jain D, Buckland BC (1988) Bioprocess Eng 3:31CrossRefGoogle Scholar
  47. 47.
    Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Int J Syst Bacterio l41:225Google Scholar
  48. 48.
    Kinoshita S (1999) Taxonomic position of glutamic acid producing bacteria. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, p 1330Google Scholar
  49. 49.
    Yamada K, Seto A (1988) Japan Patent 63 240 779 AGoogle Scholar
  50. 50.
    Murakami Y, Miwa H, Nakamori S (1992) Japan Patent 4 004 887 AGoogle Scholar
  51. 51.
    Kelle R, Hermann T, Weuster-Botz D, Eggeling L, Krämer R, Wandrey C (1996) J Biotechnol 50:123CrossRefGoogle Scholar
  52. 52.
    Ono Y, Sato K (1996) Japan Patent 8 266 295 AGoogle Scholar
  53. 53.
    Nakano T, Azuma T, Kuratsu Y (1993) Japan Patent 5 111 386AGoogle Scholar
  54. 54.
    Sassi AH, Deschamps AM, Lebeault JM (1996) Process Biochem 31:493CrossRefGoogle Scholar
  55. 55.
    Eggeling L, Oberle S, Sahm H (1998) Appl Microbiol Biotechnol 49:24CrossRefGoogle Scholar
  56. 56.
    Yokomori M, Totsuka K, Kawahara Y, Miwa H, Ohsumi T (1994) Japan Patent 6 007 182 AGoogle Scholar
  57. 57.
    Shiratsuchi M, Kuronuma H, Kawahara Y, Yoshihara Y, Miwa H, Nakamori S (1995) Biosci Biotechnol Biochem 59:83Google Scholar
  58. 58.
    Sugimoto M, Otsuna S, Nagase K, Tsuchiya M, Matsui H, Yoshihara Y, Nakamatsu T (1996) Japan Patent 8 196 280 AGoogle Scholar
  59. 59.
    Hayakawa A, Sugimoto M, Yoshihara Y, Nakamatsu T (1998) Japan Patent 10 165 180 AGoogle Scholar
  60. 60.
    Araki M, Sugimoto M, Yoshihara Y, Nakamatsu T (1998) Japan Patent 10 215 883 AGoogle Scholar
  61. 61.
    Kojima H, Totsuka K (1995) WO9 511 985Google Scholar
  62. 62.
    Kojima H, Ogawa Y, Kawamura K, Sano K (1999) Japan Patent 11 285 381 AGoogle Scholar
  63. 63.
    Lee GH, Hur W, Bremmon CE, Flickinger MC (1996) Biotechnol Bioeng 49:639CrossRefGoogle Scholar
  64. 64.
    Kimura E, Abe C, Kawahara Y, Yoshihara Y, Nakamatsu T (1995) WO9 523 224Google Scholar
  65. 65.
    Asakura Y, Kimura E, Abe C, Kawahara Y, Nakamatsu T, Usuda Y, Tsujimoto N, Kurahashi O (1995) WO9 534 672Google Scholar
  66. 66.
    Matsui K, Izui H (1997) Japan Patent 9 285 293 AGoogle Scholar
  67. 67.
    Ogawa T, Hirao N, Furukawa S, Azuma T, Kuratsu Y (1994) Japan Patent 6 000 092 AGoogle Scholar
  68. 68.
    Tsuchida T, Ohtsuka N, Takeuchi H, Uctihori H (1990) Japan Patent 2 186 995 AGoogle Scholar
  69. 69.
    Chibata I, Kisumi M, Takagi T (1983) Japan Patent 58 009 692 AGoogle Scholar
  70. 70.
    Shimizu E, Ohsumi T, Heima H, Tanaka T, Kurashige J, Enei H, Miwa K, Nakamori S (1995) Biosci Biotechnol Biochem 59:1095Google Scholar
  71. 71.
    Kurahashi O, Beyou A, Takinami K, Jarry B, Richaud F (1992) Asia-pacific biochemical engineering conference, Japan, p 129Google Scholar
  72. 72.
    Debabov VG, Kozlov JI, Khurges EM, Livshits VA, Zhdanova NI, Gusyatiner MM, Sokolov AK, Bachina TA, Chistoserdov AJ, Tsigankov JD, Yankovsky NK, Mashko SV, Lapidus AL, Gavrilova OF, Rodionov OA (1994) Eur Patent 593 792Google Scholar
  73. 73.
    Masuda M, Takamatsu S, Nishimura N, Komatsubara S, Tosa T (1992) Appl Biochem Biotech 37:255CrossRefGoogle Scholar
  74. 74.
    Katsumata R, Mizukami T, Kikuchi Y, Kino K (1986) Threonine production by the lysine producing strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon. In: Alacevic M, Hranueli D, Toman Z (eds) Genetics of industrial microorganisms. Yugoslavia, p 217Google Scholar
  75. 75.
    Ishida M, Kawashima H, Sato K, Hashiguchi K, Ito H, Enei H, Nakamori S (1994) Biosci Biotechnol Biochem 58:768Google Scholar
  76. 76.
    Kino K, Okamoto K, Takeda Y, Kuratsu Y (1993) Japan Patent 5 304 969 AGoogle Scholar
  77. 77.
    Nakano T, Nakayama M, Shitashige M, Ikeda M, Furukawa S (1996) Japan Patent 8 009 982 AGoogle Scholar
  78. 78.
    Hashiguchi K, Takesada H, Suzuki E, Matsui H (1999) Biosci Biotechnol Biochem 63:672CrossRefGoogle Scholar
  79. 79.
    Colón GE, Nguyen TT, Jetten MSM, Sinskey AJ, Stephanopoulos G (1995) Appl Microbiol Biotechnol 43:482CrossRefGoogle Scholar
  80. 80.
    Hashimoto S, Katsumata R (1996) In: Proc Ann Meet Agric Chem Soc Japan, p 279Google Scholar
  81. 81.
    Ajijian AG, Abeteisowa GE, Arushanian AU, Kocharian SM (1992) Japan Patent 4 045 160B4Google Scholar
  82. 82.
    Tomita F, Yokota A, Hashiguchi K, Ishigooka M, Kurahashi O (1996) WO9 606 926Google Scholar
  83. 83.
    Hashimoto S, Katsumata R (1998) J Ferment Bioeng 86:385CrossRefGoogle Scholar
  84. 84.
    Uhlenbusch I, Sahm H, Sprenger GA (1991) Appl Environ Microbiol 57:1360Google Scholar
  85. 85.
    Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Nature Biotechnol 17:588CrossRefGoogle Scholar
  86. 86.
    Hagishita T, Yoshida T, Izumi Y, Mitsunaga T (1996) Biosci Biotechnol Biochem 60:1604Google Scholar
  87. 87.
    Suga M, Sugimoto M, Osumi T, Nakamatsu T, Hibino W, Ito M (1999) Japan Patent 11 253 187 AGoogle Scholar
  88. 88.
    Ikeda M, Katsumata R (1995) Biosci Biotechnol Biochem 59:1600Google Scholar
  89. 89.
    Camakaris H, Cowan P, James P (1997) Eur Patent 789 073 A2Google Scholar
  90. 90.
    Azuma S, Tsunekawa H, Okabe M, Okamoto R, Aiba S (1993) Appl Microbiol Biotechnol 39:471CrossRefGoogle Scholar
  91. 91.
    Chan E-C, Tsai H-L, Chen S-L, Mou D-G (1993) Appl Microbiol Biotechnol 40:301CrossRefGoogle Scholar
  92. 92.
    BerryA (1996) Tibtech 14:250Google Scholar
  93. 93.
    Kurahashi O, Noda-Watanabe M, Toride Y, Takenouchi T, Akashi K, Morinaga Y, Enei H (1987) Agric Biol Chem 51:1791Google Scholar
  94. 94.
    Yajima Y, Sakimoto K, Takahashi K (1990) Japan Patent 2 190 182 AGoogle Scholar
  95. 95.
    Ikeda M, Katsumata R (1992) Appl Environ Microbiol 58:781Google Scholar
  96. 96.
    Ito H, Sato K, Matsui K (1990) Appl Microbiol Biotechnol 33:190CrossRefGoogle Scholar
  97. 97.
    Igarashi K, Kishino M, Seki M, Takenouchi T, Kureyama M (1993) Japan Patent 5 304 971 AGoogle Scholar
  98. 98.
    Konstantinov BK, Nishio N, Yoshida T (1990) J Ferment Technol 70:253Google Scholar
  99. 99.
    Choi HK, Kim HY, Lee DJ, Lim BL, Rhym H, Won CH, Choi HG (1992) US Patent 5 304 475Google Scholar
  100. 100.
    Backman K, O’Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, Di-Pasquantonio V, Shoda D, Hatch R, Venkatasubramanian K (1990) Ann NY Acad Sci 589:16CrossRefGoogle Scholar
  101. 101.
    Mizukami T, Hamu A, Ikeda M, Oka T, Katsumata R (1994) Biosci Biotechnol Biochem 58:635Google Scholar
  102. 102.
    Sugiura M, Suzuki S, Kisumi M (1987) Agric Biol Chem 51:371Google Scholar
  103. 103.
    Oka T (1999) Amino acids, production processes. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, p 89Google Scholar
  104. 104.
    Ohtani M, Kitahara T, Akashi K (1987) French Patent 2 588 016Google Scholar
  105. 105.
    Katsumata R, Ozaki A, Oka T, Furuya A (1984) J Bacteriol 159:306Google Scholar
  106. 106.
    Ozaki A, Katsumata R, Oka T, Furuya A (1984) Mol Gen Genet 196:175CrossRefGoogle Scholar
  107. 107.
    Santamaria R, Gil JA, Mesas JM, Martin JF (1984) J Gen Microbiol 130:2237Google Scholar
  108. 108.
    Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Folletie MT, Walker GC, Sinskey AJ (1985) J Bacteriol 162:591Google Scholar
  109. 109.
    Schwarzer A, Pühler A (1991) Bio/Technology 9:84CrossRefGoogle Scholar
  110. 110.
    Reyes O, Guyonvarch A, Bonamy C, Salti V, David F, Leblon G (1991) Gene 107:61CrossRefGoogle Scholar
  111. 111.
    Vertés AA, Hatakeyama K, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993) Biosci Biotechnol Biochem 57:2036Google Scholar
  112. 112.
    Sugimoto M, Kojima H, Tanaka A, Matsui H, Sato K, Nakamatsu T (1993) Japan Patent 5 007 491 AGoogle Scholar
  113. 113.
    Ikeda M, Katsumata R (1998) Microbiology 144:1863Google Scholar
  114. 114.
    Ozaki A, Katsumata R, Oka T, Furuya A (1985) Agric Biol Chem 49:2925Google Scholar
  115. 115.
    Ikeda M, Ozaki A, Katsumata R (1993) Appl Microbiol Biotechnol 39:318CrossRefGoogle Scholar
  116. 116.
    Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Appl Environ Microbiol 65:3100Google Scholar
  117. 117.
    Hashimoto S, Katsumata R (1995) In: Proc Ann Meet Agric Chem Soc Japan, p 440Google Scholar
  118. 118.
    Katsumata R, Ikeda M (1993) Bio/Technology 11:921CrossRefGoogle Scholar
  119. 119.
    Ikeda M, Nakanishi K, Kino K, Katsumata R (1994) Biosci Biotechnol Biochem 58:674Google Scholar
  120. 120.
    Kinoshita S, Tanaka K (1972) Glutamic acid. In: Yamada K (ed) The microbial production of amino acids. Wiley, p 263Google Scholar
  121. 121.
    Vallino JJ, Stephanopoulos G (1993) Biotechnol Bioeng 41:633CrossRefGoogle Scholar
  122. 122.
    Yamaguchi K, Ishino S, Araki K, Shirahata K (1986) Agric Biol Chem 50:2453Google Scholar
  123. 123.
    Ishino S, Shimomura-Nishimuta J, Yamaguchi K, Shirahata K, Araki K (1991) J Gen Appl Microbiol 37:157CrossRefGoogle Scholar
  124. 124.
    Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Biotechnol Bioeng 49:111CrossRefGoogle Scholar
  125. 125.
    Gubler M, Jetten G, Lee S, Sinskey AJ (1994) Appl Environ Microbiol 60:2494Google Scholar
  126. 126.
    Peters-Wendisch PG, Eikmanns BJ, Thierbach G, Backmann B, Sahm H (1993) FEMS Microbiol Lett 112:269CrossRefGoogle Scholar
  127. 127.
    Gubler M, Park SM, Jetten M, Stephanopoulos G, Sinskey AJ (1994) Appl Microbiol Biotechnol 40:857CrossRefGoogle Scholar
  128. 128.
    Jetten MSM, Pitoc GA, Follettie MT, Sinskey AJ (1994) Appl Microbiol Biotechnol 41:47Google Scholar
  129. 129.
    Park SM, Shaw-Reid C, Sinskey AJ, Stephanopoulos G (1997) Appl Microbiol Biotechnol 47:430CrossRefGoogle Scholar
  130. 130.
    Peters-Wendisch PG, Wendisch VF, Paul S, Eikmanns BJ, Sahm H (1997) Microbiology 143:1095Google Scholar
  131. 131.
    Cocaign-Bousquet M, Guyonvarch A, Lindley ND (1996) Appl Environ Microbiol 62:429Google Scholar
  132. 132.
    Ihnen ED, Demain AL (1969) J Bacteriol 98:1151Google Scholar
  133. 133.
    Ikeda M, Okamoto K, Katsumata R (1998) Appl Microbiol Biotechnol 50:375CrossRefGoogle Scholar
  134. 134.
    Fraenkel DG, Vinopal RT (1973) Annu Rev Microbiol 27:69CrossRefGoogle Scholar
  135. 135.
    Ikeda M, Okamoto K, Katsumata R (1999) Appl Microbiol Biotechnol 51:201CrossRefGoogle Scholar
  136. 136.
    Ikeda M, Okamoto K, Nakano T, Kamada N (2000) Japan Patent 12 014 396 AGoogle Scholar
  137. 137.
    Kimura E, Abe C, Kawahara Y, Nakamatsu T (1996) Biosci Biotechnol Biochem 60:1565Google Scholar
  138. 138.
    Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Biosci Biotechnol Biochem 61:1109Google Scholar
  139. 139.
    Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997) Biochem Biophys Res Commun 234:157CrossRefGoogle Scholar
  140. 140.
    Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Biosci Biotechnol Biochem 63:1274CrossRefGoogle Scholar
  141. 141.
    NCBI sequence database, GenBank,
  142. 142.
    O’Regan M, Thierbach G, Bachmann B, Villeval D, Lepage P, Viret JF, Lemoine Y (1989) Gene 77:237CrossRefGoogle Scholar
  143. 143.
    Eikmanns BJ, Follettie MT, Girot MU, Sinskey AJ (1989) Mol Gen Genet 218:330CrossRefGoogle Scholar
  144. 144.
    von der Osten CH, Barbas CF, Wong CH, Sinskey AJ (1989) Mol Microbiol 3:1625CrossRefGoogle Scholar
  145. 145.
    Eikmanns BJ (1992) J Bacteriol 174:6076Google Scholar
  146. 146.
    Eikmanns BJ, Rittmann D, Sahm H (1995) J Bacteriol 177:774Google Scholar
  147. 147.
    Usuda Y, Tujimoto N, Abe C, Asakura Y, Kimura E, Kawahara Y, Kurahashi O, Matsui H (1996) Microbiology 142:3347Google Scholar
  148. 148.
    Peters-Wendisch PG, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ (1997) Microbiology 144:915CrossRefGoogle Scholar
  149. 149.
    Ikeda M, Kamada N, Takano Y, Nakano T (1999) Biosci Biotechnol Biochem 63:1806CrossRefGoogle Scholar
  150. 150.
    Nakagawa S, Mizoguchi H, Ando S, Hayashi M, Hattori M, Shiba T, Sakaki Y, Yokoi H, Ozaki A (2000) Genomes 2000: International conference on microbial and model genomes, Paris, p 36Google Scholar
  151. 151.
    Frost JW (1992) US Patent 5 168 056Google Scholar
  152. 152.
    Backman KC (1992) US Patent 5 169 768Google Scholar
  153. 153.
    Koehn SJ, Evans TM, Nelson RA, Taylor PP(1994) WO9 428 154Google Scholar
  154. 154.
    Liao JC (1996) WO9 608 567Google Scholar
  155. 155.
    Sprenger G, Siewe R, Sahm H, Karutz M, Sonke T (1998) WO9 818 936Google Scholar
  156. 156.
    Sprenger G, Siewe R, Sahm H, Karutz M, Sonke T (1998) WO9 818 937Google Scholar
  157. 157.
    Patnaik R, Liao JC (1994) Appl Environ Microbiol 60:3903Google Scholar
  158. 158.
    Ikeda M, Katsumata R (1994) J Ferment Bioeng 78:420CrossRefGoogle Scholar
  159. 159.
    Sumantran VN, Schweizer HP, Datta P (1990) JBacteriol 172:4288Google Scholar
  160. 160.
    Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Appl Environ Microbiol 60:126Google Scholar
  161. 161.
    Palmieri L, Berns D, Krämer R, Eikmanns M (1996) Arch Microbiol 165:48CrossRefGoogle Scholar
  162. 162.
    Krämer R (1994) Arch Microbiol 162:1CrossRefGoogle Scholar
  163. 163.
    Krämer R, Boles E, Eggeling L, Erdmann A, Gutmann M, Kronemeyer W, Palmieri L, Zittrich S (1994) Biochim Biophys Acta 1187:245CrossRefGoogle Scholar
  164. 164.
    Vrljic M, Kronemeyer W, Sahm H, Eggeling L (1995) JBacteriol 177:4021Google Scholar
  165. 165.
    Vrljic M, Sahm H, Eggeling L (1996) Mol Microbiol 22:815CrossRefGoogle Scholar
  166. 166.
    Aleshin VV, Zakataeva NP, Livshits VA (1999) Trends Biochem Sci 24:133CrossRefGoogle Scholar
  167. 167.
    Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA (1999) FEBS Lett 452:228CrossRefGoogle Scholar
  168. 168.
    Leinfelder W, Winterhalter C (1999) Japan Patent 11 056 381 AGoogle Scholar
  169. 169.
    Russell JB, Cook GM (1995) Microbiol Rev 59:48Google Scholar
  170. 170.
    Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F (1994) Biosci Biotechnol Biochem 58:2164CrossRefGoogle Scholar
  171. 171.
    Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Mol Microbiol 5:1197CrossRefGoogle Scholar
  172. 172.
    Omori K, Suzuki S, Imai Y, Komatsubara S (1992) J Gen Microbiol 138:693Google Scholar
  173. 173.
    Omori K, Suzuki S, Imai Y, Komatsubara S (1993) J Bacteriol 175:785Google Scholar
  174. 174.
    Sugimoto M, Ogawa Y, Suzuki T, Tanaka A, Matsui H (1994) Japan Patent 6 062 866 AGoogle Scholar
  175. 175.
    Sugimoto M, Suzuki T, Matsui H (1996) Japan Patent 8 070 860 AGoogle Scholar
  176. 176.
    Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Appl Environ Microbiol 63:761Google Scholar
  177. 177.
    Nakamori S, Kobayashi S, Nishimura T, Takagi H (1999) Appl Microbiol Biotechnol 52:179CrossRefGoogle Scholar
  178. 178.
    Nakagawa S, Mizoguchi H, Ando S, Hayashi M, Ochiai K, Yokoi H, Tateishi N, Senoh A, Ikeda M, Ozaki A (2001) Eur Patent 1 108 790Google Scholar
  179. 179.
    Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) Appl Microbiol Biotechnol 58:217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Masato Ikeda
    • 1
  1. 1.Tokyo Research LaboratoriesKyowa Hakko Kogyo Co., LtdTokyoJapan

Personalised recommendations