A New 3D 6-Subiteration Thinning Algorithm Based on P-Simple Points

  • Christophe Lohou
  • Gilles Bertrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)


In a recent study [1], we proposed a new methodology to build thinning algorithms based on the deletion of P-simple points. This methodology may permit to conceive a thinning algorithm A′ from an existent thinning algorithm A, such that A′ deletes at least all the points removed by A, while preserving the same end points.

In this paper, by applying this methodology, we propose a new 6-subiteration thinning algorithm which deletes at least all the points removed by the 6-subiteration thinning algorithm proposed by Palágyi and Kuba [2].


  1. 1.
    C. Lohou and G. Bertrand. A new 3D 12-subiteration thinning algorithm based on P-simple points. In 8th IWCIA 2001, volume 46 of ENTCS, pages 39–58, 2001.Google Scholar
  2. 2.
    K. Palágyi and A. Kuba. A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters, 19:613–627, 1998.zbMATHCrossRefGoogle Scholar
  3. 3.
    C.M. Ma and M. Sonka. A fully parallel 3D thinning algorithm and its applications. Computer Vision and Image Understanding, 64(3):420–433, 1996.CrossRefGoogle Scholar
  4. 4.
    D.G. Morgenthaler. Three-dimensional simple points: Serial erosion, parallel thinning, and skeletonization. Technical Report TR-1009, Computer Vision Laboratory, University of Maryland, 1981.Google Scholar
  5. 5.
    T.Y. Kong. A digital fundamental group. Computer and Graphics, 13(2):159–166, 1989.CrossRefGoogle Scholar
  6. 6.
    T.Y. Kong and A. Rosenfeld. Digital topology: introduction and survey. Computer Vision, Graphics and Image Processing, 48:357–393, 1989.CrossRefGoogle Scholar
  7. 7.
    P.K. Saha, B. Chanda, and D.D. Majumder. Principles and algorithms for 2D and 3D shrinking. Technical Report TR/KBCS/2/91, N.C.K.B.C.S. Library, Indian Statistical Institute, Calcutta, India, 1991.Google Scholar
  8. 8.
    R.W. Hall. Connectivity preserving parallel operators in 2D and 3D images. In Vision Geometry, volume 1832 of SPIE, pages 172–183, 1992.Google Scholar
  9. 9.
    T.Y. Kong. On the problem of determining whether a parallel reduction operator for n-dimensional binary images always preserves topology. In Vision Geometry II, volume 2060 of SPIE, pages 69–77, 1993.Google Scholar
  10. 10.
    G. Bertrand. Simple points, topological numbers and geodesic numbers in cubic grids. Pattern Recognition Letters, 15:1003–1011, 1994.CrossRefGoogle Scholar
  11. 11.
    C.M. Ma. On topology preservation in 3D thinning. Computer Vision, Graphics, and Image Processing: Image Understanding, 59(3):328–339, 1994.CrossRefGoogle Scholar
  12. 12.
    T.Y. Kong. On topology preservation in 2-D and 3-D thinning. International Journal of Pattern Recognition and Artificial Intelligence, 9(5):813–844, 1995.CrossRefGoogle Scholar
  13. 13.
    T.Y. Kong. Topology-preserving deletion of 1’s from 2-, 3-and 4-dimensional binary images. In 7th DGCI, volume 1347 of LNCS, pages 3–18, 1997.Google Scholar
  14. 14.
    S. Fourey and R. Malgouyres. A concise characterization of 3D simple points. In 9th DGCI, volume 1953 of LNCS, pages 27–36, 2000.Google Scholar
  15. 15.
    Y.F. Tsao and K.S. Fu. A parallel thinning algorithm for 3D pictures. Computer Graphics and Image Processing, 17:315–331, 1981.CrossRefGoogle Scholar
  16. 16.
    W. Gong and G. Bertrand. A simple parallel 3D thinning algorithm. In International Conference on Pattern Recognition, pages 188–190, 1990.Google Scholar
  17. 17.
    F. Rolland, J.-M. Chassery, and A. Montanvert. 3D medial surfaces and 3D skeletons. In Visual Form 1991, pages 443–450, 1991.Google Scholar
  18. 18.
    K. Palágyi and A. Kuba. A parallel 3D 12-subiteration thinning algorithm. Graphical Models and Image Processing, 61:199–221, 1999.CrossRefGoogle Scholar
  19. 19.
    G. Bertrand and Z. Aktouf. A three-dimensional thinning algorithm using subfields. In Vision Geometry III, volume 2356 of SPIE, pages 113–124, 1994.Google Scholar
  20. 20.
    K. Palágyi and A. Kuba. A hybrid thinning algorithm for 3D medical images. Journal of Computing and Information Technology, CIT 6, pages 149–164, 1998.Google Scholar
  21. 21.
    C.M. Ma. A 3D fully parallel thinning algorithm for generating medial faces. Pattern Recognition Letters, 16:83–87, 1995.CrossRefGoogle Scholar
  22. 22.
    A. Manzanera, T. M. Bernard, F. Prêteux, and B. Longuet. A unified mathematical framework for a compact and fully parallel n-D skeletonization procedure. In Vision Geometry VIII, volume 3811 of SPIE, pages 57–68, 1999.Google Scholar
  23. 23.
    G. Bertrand. On P-simple points. Compte Rendu de l’Académie des Sciences de Paris, t. 321(Série 1):1077–1084, 1995.zbMATHMathSciNetGoogle Scholar
  24. 24.
    G. Malandain and G. Bertrand. Fast characterization of 3D simple points. In IEEE International Conference on Pattern Recognition, pages 232–235, 1992.Google Scholar
  25. 25.
    G. Bertrand. Sufficient conditions for 3D parallel thinning algorithms. In Vision Geometry IV, volume 2573 of SPIE, pages 52–60, 1995.MathSciNetGoogle Scholar
  26. 26.
    G. Bertrand and R. Malgouyres. Some topological properties of discrete surfaces. In 6th DGCI, volume 1176 of LNCS, pages 325–336, 1996.Google Scholar
  27. 27.
    J. Serra. Image analysis and mathematical morphology. Academic Press, 1982.Google Scholar
  28. 28.
    P.P. Jonker. Morphological operations on 3D and 4D images: From shape primitive detection to skeletonization. In 9th DGCI, volume 1953 of LNCS, pages 371–391, 2000.Google Scholar
  29. 29.
    G. Bertrand. P-simple points: A solution for parallel thinning. In 5th DGCI, pages 233–242, 1995.Google Scholar
  30. 30.
    R. Malgouyres and S. Fourey. Strong surfaces, surface skeletons and image superimposition. In Vision Geometry VII, volume 3454 of SPIE, pages 16–27, 1998.Google Scholar
  31. 31.
    J. Burguet and R. Malgouyres. Strong thinning and polyhedrization of the surface of a voxel object. In 9th DGCI, volume 1953 of LNCS, pages 222–234, 2000.Google Scholar
  32. 32.
    C. Lohou and G. Bertrand. A 3D 12-subiteration thinning algorithm based on P-simple points. Submitted for publication.Google Scholar
  33. 33.
    R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computer, Vol. C-35(8):677–691, 1986.CrossRefGoogle Scholar
  34. 34.
    K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a bdd package. In 27th IEEE Design Automation Conference, pages 40–45, 1990.Google Scholar
  35. 35.
    L. Robert and G. Malandain. Fast binary image processing using binary decision diagrams. Computer Vision and Image Understanding, 72(1):1–9, 1998.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christophe Lohou
    • 1
  • Gilles Bertrand
    • 1
  1. 1.Laboratoire d’Algorithmique et Architecture des Systèmes Informatiques (A2SI)École Supérieure d’Ingénieurs en Électrotechnique et Électronique (Esiee)Noisy-le-Grand CedexFrance

Personalised recommendations