Reconstruction of Binary Matrices from Absorbed Projections

  • E. Balogh
  • A. Kuba
  • A. Del Lungo
  • M. Nivat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)


A generalization of the classical discrete tomography problem is considered: Reconstruct binary matrices from their absorbed row and column sums. We show that this reconstruction problem can be linked to a 3SAT problem if the absorption is characterized with the constant \( \beta = ln\left( {\tfrac{{1 + \sqrt 5 }} {2}} \right) \).


discrete tomography reconstruction absorption 


  1. 1.
    Brualdi, R.A.: Matrices of zeros and ones with fixed row and column sums. Linear Algebra and Its Applications 33 (1980) 159–231.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Herman, G.T., Kuba, A. (Eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999).Google Scholar
  3. 3.
    Kuba, A., Nivat, M.: A Sufficient condition for non-uniqueness in binary tomography with absorption, Technical Report, University of Szeged (2001).Google Scholar
  4. 4.
    Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption, accepted for publication in Linear Algebra and its Applications (2001).Google Scholar
  5. 5.
    M. Chrobak, C. Dürr, Reconstructing hv-convex polyominoes from orthogonal projections, Information Processing Letters 69 (1999) 283–289.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Y. Boufkhad, O. Dubois, and M. Nivat, Reconstructing (h,v)-convex two-dimensional patterns of objects from approximate horizontal and vertical projections, to appear in Theoretical Computer Science.Google Scholar
  7. 7.
    O. Dubois, P. André, Y. Boufkhad, and J. Carlier, SAT versus UNSAT, in Second DIMACS Implementation Challenge, D. Johnson and M. A. Trick, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. Balogh
    • 1
  • A. Kuba
    • 1
  • A. Del Lungo
    • 2
  • M. Nivat
    • 3
  1. 1.Department of Applied InformaticsUniversity of SzegedSzegedHungary
  2. 2.Department of MathematicsUniversity of SienaSienaItaly
  3. 3.Laboratoire d’Informatique Algorithmique: Fondements et ApplicationsUniversité ParisParisFrance

Personalised recommendations