Advertisement

An Incremental Linear Time Algorithm for Digital Line and Plane Recognition Using a Linear Incremental Feasibility Problem

  • Lilian Buzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

We present a new linear incremental method for digital hyperplane1 recognition. The first linear incremental algorithm was given for 8-connected planar lines in [DR95]. Our method recognizes any subset of line in the plane or plane in the space. We present the Megiddo linear programming (LP) algorithm in linear time and describe its adaptation to our problem. Then we explain its improvement toward a linear incremental method.

Keywords

digital line recognition digital plane recognition feasibility problem incremental linear time 

—Conference Topic

Models for Discrete Geometry 

—Type of Presentation

oral presentation 

References

  1. [AS98]
    Pankaj K. Agarwal and Micha Sharir (1998). Efficient algorithms for geometric optimization. ACM Comput. Surv., vol. 30, pp. 412–458.CrossRefGoogle Scholar
  2. [BKOS00]
    M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf (2000). Computational Geometry: Algorithms and Applications (2nd ed.). Springer-Verlag.Google Scholar
  3. [Cla86]
    K.L. Clarkson (1986). Linear Programming in O(n.23.d 2 ) time. Inform. Process. Lett., vol. 22, pp. 21–24.CrossRefMathSciNetGoogle Scholar
  4. [Cla98]
    K.L. Clarkson (1998). A Las Vegas algorithm for linear programming when the dimension is small. In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pp. 452–456.Google Scholar
  5. [DR95]
    I. Debled-Rennesson, J.-P. Reveillès (1995). A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence, vol. 9, no. 6, pp. 635–662.CrossRefGoogle Scholar
  6. [Ede87]
    H. Edelsbrunner (1987). Algorithms in Combinatorial Geometry. Springer-Verlag, New York.zbMATHGoogle Scholar
  7. [Meg83]
    N. Megiddo (1983). Linear-time algorithms for linear programming in ℝ3 and related problems. SIAM J. Comput., vol. 12, pp. 759–776.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Meg84]
    N. Megiddo (1984). Linear programming in linear time when the dimension is fixed. J. ACM, vol. 31, pp. 114–127.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [PS85]
    F.P. Preparata and M.I. Shamos (1985). Computational Geometry: an Introduction. Springer-Verlag, New York.Google Scholar
  10. [Rev91]
    J.P. Reveillès (1991). Géometrie discrète, calculs en nombre entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg.Google Scholar
  11. [Sei91]
    R. Seidel (1991). Small-Dimensional Linear Programming and Convex Hulls Made Easy. Discrete and Computational Geometry, vol. 6, pp. 423–434.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lilian Buzer
    • 1
  1. 1.IUT département InformatiqueLLAIC, Université Clermont 1AUBIERE cedexFRANCE

Personalised recommendations