Advances in the Analysis of Topographic Features on Discrete Images

  • Pierre Soille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

By viewing the grey scale values of 2-dimensional (2-D) images as elevation values above the image definition domain, geomorphological terms such as crest lines, watersheds, catchment basins, valleys, and plateaus have long been used in digital image processing for referring to image features useful for image analysis tasks. Because mathematical morphology relies on a topographic representation of 2-D images allowing for grey scale images to be viewed as 3-D sets, it naturally offers a wide variety of transformations for extracting topographic features. This paper presents some advances related to the imposition of minima, the lower complete transformation, the hit-or-miss transform, and the extraction of crest lines by a skeletonisation procedure.

Keywords

Mathematical morphology minima imposition plateau lower complete transformation grey scale hit-or-miss crest lines grey scale skeletonisation watersheds 

References

  1. [1]
    G. Bertrand, J.-C. Everat, and M. Couprie. Image segmentation through operators based upon topology. Journal of Electronic Imaging, 6(4):395–405, 1997.CrossRefGoogle Scholar
  2. [2]
    S. Beucher. Segmentation d’images et morphologie mathématique. PhD thesis, Ecole des Mines de Paris, June 1990.Google Scholar
  3. [3]
    S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed transformation. In E. Dougherty, editor, Mathematical morphology in image processing, pages 433–481. Marcel Dekker, New York, 1993.Google Scholar
  4. [4]
    E. Breen and R. Jones. Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding, 64(3):377–389, 1996.CrossRefGoogle Scholar
  5. [5]
    S. Collins. Terrain parameters directly from a digital elevation model. The Canadian Surveyor, 29(5):507–518, December 1975.Google Scholar
  6. [6]
    M. Couprie and G. Bertrand. Tesselations by connection in orders. In Proc. of Discrete Geometry for Computer Imagery’2000, Uppsala, volume 1953 of Lecture Notes in Computer Science, pages 15–26. Springer-Verlag, 2000.Google Scholar
  7. [7]
    M. Couprie, F. Nivando Bezerra, and G. Bertrand. Grayscale image processing using topological operators. In L. Latecki, R. Melter, D. Mount, and A. Wu, editors, Vision Geometry VIII, volume SPIE-3811, pages 261–272, 1999.Google Scholar
  8. [8]
    H. Digabel and C. Lantuéjoul. Iterative algorithms. In J.-L. Chermant, editor, Quantitative analysis of microstructures in materials sciences, biology and medicine, pages 85–99, Stuttgart, 1978. Dr. Riederer-Verlag GmbH.Google Scholar
  9. [9]
    J. Garbrecht and L. Martz. The assignment of drainage direction over flat surfaces in raster digital elevation models. Journal of Hydrology, 193:204–213, 1997.CrossRefGoogle Scholar
  10. [10]
    V. Goetcherian. From binary to grey tone image processing using fuzzy logic concepts. Pattern Recognition, 12:7–15, 1980.CrossRefGoogle Scholar
  11. [11]
    R. Haralick. Ridges and valleys on digital images. Computer Vision, Graphics, and Image Processing, 22:28–38, 1983.CrossRefGoogle Scholar
  12. [12]
    D. Mark. Automated detection of drainage networks from digital elevation models. Cartographica, 21:168–178, 1984.Google Scholar
  13. [13]
    F. Meyer. Skeletons and perceptual graphs. Signal Processing, 16:335–363, 1989.CrossRefMathSciNetGoogle Scholar
  14. [14]
    F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, 1(1):21–46, September 1990.CrossRefGoogle Scholar
  15. [15]
    C. Pudney. Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Computer Vision and Image Understanding, 72(3):404–413, December 1998.CrossRefGoogle Scholar
  16. [16]
    V. Ranwez and P. Soille. Order Independent Homotopic Thinning. In G. Bertrand, M. Couprie, and L. Perroton, editors, Proc. of Discrete Geometry for Computer Imagery’99, volume 1568 of Lecture Notes in Computer Science, pages 337–346. Springer-Verlag, 1999.CrossRefGoogle Scholar
  17. [17]
    V. Ranwez and P. Soille. Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters, 2002, Publication pending.Google Scholar
  18. [18]
    C. Ronse. A topological characterization of thinning. Theoretical Computer Science, 43:31–41, 1986.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    P. Salembier and J. Serra. Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing, 4(8):1153–1160, August 1995.CrossRefGoogle Scholar
  20. [20]
    J. Serra. Image analysis and mathematical morphology. Academic Press, London, 1982.MATHGoogle Scholar
  21. [21]
    J. Serra and P. Salembier, editors. Mathematical morphology and its applications to signal processing, 1993. Universitat Politècnica de Catalunya, Barcelona.Google Scholar
  22. [22]
    P. Soille. Spatial distributions from contour lines: An efficient methodology based on distance transformations. Journal of Visual Communication and Image Representation, 2(2):138–150, June 1991.CrossRefGoogle Scholar
  23. [23]
    P. Soille. Morphologie mathématique: du relief à la dimensionalité —Algorithmes et méthodes-. PhD thesis, Université catholique de Louvain; en collaboration avec l’Ecole des Mines de Paris, February 1992.Google Scholar
  24. [24]
    P. Soille. Generalized geodesic distances applied to interpolation and shape description. In J. Serra and P. Soille, editors, Mathematical Morphology and its Applications to Image Processing, pages 193–200. Kluwer Academic Publishers, 1994Google Scholar
  25. [25]
    P. Soille. Generalized geodesy via geodesic time. Pattern Recognition Letters, 1235–1240, December 1994Google Scholar
  26. [26]
    P. Soille. Morphological image analysis: Principles and Applications. Springer-Verlag, Berlin, New York, 1999. Second extended edition to appear in 2002, see also http://ams.egeo.sai.jrc.it/soille MATHGoogle Scholar
  27. [27]
    P. Soille. On morphological operators based on rank filters. Pattern Recognition, 2002.Google Scholar
  28. [28]
    P. Soille. Carving and adpative drainage enforcement of grid digital elevation models. Water Resources Research, Submitted.Google Scholar
  29. [29]
    P. Soille and M. Ansoult. Automated basin delineation from digital elevation models using mathematical morphology. Signal Processing, 20: 171–182, June 1990.Google Scholar
  30. [30]
    P. Soille and C. Gratin. An efficient algorithm for drainage networks extraction on DEMs. Journal of Visual Communication and Image Representation, 5(2): 181–189, June 1994.CrossRefGoogle Scholar
  31. [31]
    S. Svensson, G. Borgefors, and I. Nyström. On reversible skeletonization using anchor-points from distance transforms. Journal of Visual Communication and Image Representation, 10:379–397, 1999.CrossRefGoogle Scholar
  32. [32]
    H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors. In P. Maragos, editor, Visual Communications and Image Processing, volume SPIE-1818, pages 862–876, 1992.Google Scholar
  33. [33]
    B. Verwer, P. Verbeek, and S. Dekker. An efficient cost algorithm applied to distance transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(4):425–429, April 1989.CrossRefGoogle Scholar
  34. [34]
    L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583–598, June 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Pierre Soille
    • 1
  1. 1.EC Joint Research CentreInstitute for Environment and SustainabilityIspraItaly

Personalised recommendations