Displaying Image Neighborhood Hypergraphs Line-Graphs

  • S. Chastel
  • P. Colantoni
  • A. Bretto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

Graph-based structures are commonplace in image processing. Our contribution in this article consists in giving hints representing a new modeling of digital images: image neighborhood hypergraphs. We give some results on the hyperedges coloring of them. We also describe techniques we used to display image neighborhood hypergraphs line-graphs. These techniques form the basis of a tool that allows the exploration of these structures. In addition, this tool can be used to visualize, explore and describe features of image regions of interest such as object edges or noise.

Keywords

Regular Graph Chromatic Number Maximum Clique Chromatic Index Image Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Bollobás Modern Graph Theory, Springer-Verlag, (1998).Google Scholar
  2. 2.
    C. Berge, “Introduction à la théorie des hypergraphes”, Les Presses de l’Université de Montréal, (1973)Google Scholar
  3. 3.
    C. Berge, “Graphs”. North Holland, (1987).Google Scholar
  4. 4.
    C. Berge, “Hypergraphs”. North Holland, (1989).Google Scholar
  5. 5.
    I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo, The maximum clique problem, http://www.dsi.unive.it/ pelillo/papers/tr99-1.ps.gz, (1999).
  6. 6.
    A. Bretto, J. Azema, H. Cherifi, and B. Laget, Combinatorics and image processing in “Computer Vision Graphic in Image Processing”, 59, (5), September, (1997) 265–277.Google Scholar
  7. 7.
    A. Bretto, and H. Cherifi, A noise cancellation algorithm based on hypergraph modeling in “IEEE Workshop on Digital Signal Processing” (1996) 1–4.Google Scholar
  8. 8.
    A. Bretto, and H. Cherifi, Noise detection and cleaning by hypergraph model in “IEEE Computer Sciences” International Symposium on Information Technology: Coding and computing, IEEE Computer Sciences, (2000) 416–419.Google Scholar
  9. 9.
    A. Bretto and S. Chastel, A note on valued polyominoes hypergraph image modeling, International Journal of Computational and Numerical Analysis and Applications, to appear.Google Scholar
  10. 10.
    S. Chastel, A. Bretto, and H. Cherifi, Image neighborhood hypergraph model and edge detection in “JCIS Proceedings” 3, Association for Intelligence Machinery, (1998), 272–275.Google Scholar
  11. 11.
    J. P. Cocquerez and S. Philipp, Analyse d’images: filtrage et segmentation, Enseignement de la physique, Masson, (1995).Google Scholar
  12. 12.
    T.K. Dey, H. Edelsbrunner, S. Guha “Computational topology”, Technical report, (1998).Google Scholar
  13. 13.
    R. Diestel, “Graph Theory”, Graduate Text in Mathematics, Springer-Verlag, (1997).Google Scholar
  14. 14.
    M. Gondran, and M. Minoux, “Graphs and Algorithms” Wiley, Chichester, (1984).MATHGoogle Scholar
  15. 15.
    I. Hoyler, The NP-completeness of edge coloring, SIAM J. Comput., 10: 718–720, (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Jing-Ying, Multilevel Median Filter Based on Fuzzy Decision in “IEEE Trans. Image Processing”, 4: 680–682, (1995)CrossRefGoogle Scholar
  17. 17.
    D. Leven and Z. Galil, NP-completeness of finding the chromatic index of regular graphs, J. Algorithms, 4: 35–44 (1983)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    V.A. Kovalevsky, Finite topology as applied to image processing in “Computer Vision, Graphics, and Image Processing” 46 (1989) 141–161.CrossRefGoogle Scholar
  19. 19.
    A. Montanvert, and J.M. Chassery, “Géometrie discrète en analyse d’images” Traité des Nouvelles Technologies. Série Images. Hermès, Paris (1991).Google Scholar
  20. 20.
    J.-P. Réveillès, Géométrie discrète, calculs en nombre entiers et algorithmique, Thèse de doctorat, Université L. Pasteur, Strasbourg, (1991).Google Scholar
  21. 21.
    F.P. Preparata, and M.I. Shamos, “Computational Geometry: An Introduction”, Springer, New York, (1985).Google Scholar
  22. 22.
    S. Rital, A. Bretto, H. Cherifi, and D. Aboutajdine, Modélisation d’images par hypergraphe. Application au débruitage, ISIVC Proceedings (ed. IAPR), Rabat (2000), 25–34.Google Scholar
  23. 23.
    A. Rosenfeld, “Digital Image Processing”, Academic Press, San Diego, (1982)Google Scholar
  24. 24.
    J.C. Russ, “The image processing handbook” CRC press, IEEE press, Springer, Berlin (1999)MATHGoogle Scholar
  25. 25.
    K. Voss, Discrete Images, Object and Functions in ℤ n, Springer-Verlag (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. Chastel
    • 1
  • P. Colantoni
    • 1
  • A. Bretto
    • 1
  1. 1.LIGIVUniversité de Saint-ÉtienneSAINT-ÉTIENNE Cedex 01

Personalised recommendations