Advertisement

Abstraction Pyramids on Discrete Representations

  • Walter G. Kropatsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

We review multilevel hierarchies under two special aspects: their potential for abstraction and for storing discrete representations. Motivated by claims to ‘bridge the representational gap between image and model features’ and by the growing importance of topological properties we discuss several extensions to dual graph pyramids and to topological maps: structural simplification should preserve important topological properties and content abstraction could be guided by an external knowledge base.

Keywords

Dual Graph Reduction Function Primal Graph Neighborhood Graph Discrete Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Y. Bertrand, G. Damiand, and C. Fiorio. Topological Encoding of 3D Segmented Images. In G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Proceedings DGCI’00, Discrete Geometry for Computer Imagery, volume Vol. 1953 of Lecture Notes in Computer Science, pages 311–324, Uppsala, Sweden, 2000. Springer, Berlin Heidelberg, New York.Google Scholar
  2. [2]
    Y. Bertrand, C. Fiorio, and Y. Pennaneach. Border Map: A Topological Representation for nD Image Analysis. In G. Bertrand, M. Couprie, and L. Perroton, editors, Discrete Geometry for Computer Imagery, DGCI’99, volume Vol. 1568 of Lecture Notes in Computer Science, pages 242–257, Marne-la-Vallée, France, 1999. Springer, Berlin Heidelberg, New York.CrossRefGoogle Scholar
  3. [3]
    J. C. Bezdek and N. R. Pal. An index of topological preservation for feature extraction. Pattern Recognition, 28(3):381–391, March 1995.CrossRefGoogle Scholar
  4. [4]
    M. Bister, J. Cornelis, and A. Rosenfeld. A critical view of pyramid segmentation algorithms. Pattern Recognition Letters, Vol. 11(No. 9):pp. 605–617, September 1990.zbMATHCrossRefGoogle Scholar
  5. [5]
    V. E. Brimkov, E. Andres, and R. P. Barneva. Object Discretization in Higher Dimensions. In G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Proceedings DGCI’00, Discrete Geometry for Computer Imagery, volume Vol. 1953 of Lecture Notes in Computer Science, pages 210–221, Uppsala, Sweden, 2000. Springer, Berlin Heidelberg, New York.Google Scholar
  6. [6]
    L. Brun and W. G. Kropatsch. Contraction Kernels and Combinatorial Maps. In J.-M. Jolion, W. G. Kropatsch, and M. Vento, editors, Graph-based Representations in Pattern Recognition, GbR 2001, pages 12–21. CUEN, 2001. ISBN 887146 579-2.Google Scholar
  7. [7]
    L. Brun and W. G. Kropatsch. Introduction to Combinatorial Pyramids. in print, 2001. Winterschool “Digital and Image Geometry”, 17.12.2000-22.12.2000.Google Scholar
  8. [8]
    M. Burge and W. G. Kropatsch. A Minimal Line Property Preserving Representation of Line Images. Computing, Devoted Issue on Image Processing, 62:pp. 355–368, 1999.zbMATHGoogle Scholar
  9. [9]
    J. Burguet and R. Malgoures. Strong Thinning and Polyhedrization of the Surface of a Voxel Object. In G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Proceedings DGCI’00, Discrete Geometry for Computer Imagery, volume Vol. 1953 of Lecture Notes in Computer Science, pages 222–234, Uppsala, Sweden, 2000. Springer, Berlin Heidelberg, New York.Google Scholar
  10. [10]
    P. J. Burt. Attention mechanisms for vision in a dynamic world. In Proc. 9th International Conference on Pattern Recognition, pages 977–987, Rome, Italy, November 1988. IEEE Comp.Soc.Google Scholar
  11. [11]
    P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, Vol. COM-31(No.4):pp.532–540, April 1983.CrossRefGoogle Scholar
  12. [12]
    J.-M. Chassery and A. Montanvert. Géométrie discrète en analyse d’images. Traité des Nouvelles Technologies, série — Images. HERMES, Paris, France, 1991.Google Scholar
  13. [13]
    G. Damiand. Définition et étude d’un modèle topologique minimal de représentation d’images 2d et 3d. PhD thesis, LIRMM, Université de Montpellier, 2001.Google Scholar
  14. [14]
    L. De Floriani, P. Magillo, and E. Puppo. Multiresolution Representation of Shapes Based on Cell Complexes. In G. Bertrand, M. Couprie, and L. Perroton, editors, Discrete Geometry for Computer Imagery, DGCI’99, volume Vol. 1568 of Lecture Notes in Computer Science, pages 3–18, Marne-la-Vallée, France, 1999. Springer, Berlin Heidelberg, New York.CrossRefGoogle Scholar
  15. [15]
    T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology Preserving Edge Contraction. in print, 1999.Google Scholar
  16. [16]
    H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. In SCG’01, June 3–5, 2001, Medford, Mass. USA, ACM 1-58113-357-X/01/0006, 2001.Google Scholar
  17. [17]
    R. Forman. Combinatorial Differential Topology and Geometry. in print, 1999.Google Scholar
  18. [18]
    S. Fourey and R. Malgouyres. Intersection Number of Paths Lying on a Digital Surface and a New Jordan Theorem. In G. Bertrand, M. Couprie, and L. Perroton, editors, Discrete Geometry for Computer Imagery, DGCI’99, volume Vol. 1568 of Lecture Notes in Computer Science, pages 104–117, Marne-la-Vallée, France, 1999. Springer, Berlin Heidelberg, New York.CrossRefGoogle Scholar
  19. [19]
    R. Glantz and W. G. Kropatsch. Plane Embedding of Dually Contracted Graphs. In G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Proceedings DGCI’00, Discrete Geometry for Computer Imagery, volume Vol. 1953 of Lecture Notes in Computer Science, pages 348–357, Uppsala, Sweden, 2000. Springer, Berlin Heidelberg, New York.Google Scholar
  20. [20]
    R. L. Hartley. Multi-Scale Models in Image Analysis. PhD thesis, University of Maryland, Computer Science Center, 1984.Google Scholar
  21. [21]
    J.-M. Jolion and A. Rosenfeld. A Pyramid Framework for Early Vision. Kluwer Academic Publishers, 1994.Google Scholar
  22. [22]
    J. Kittler, K. Messer, W. Christmas, B. Levienaise-Obadia, and D. Koubaroulis. Generation of semantic cues for sports video annotation. In Proceedings IEEE International Conference on Image Processing, ICIP2001, pages pp.26–29, Thessaloniki, Gr., 2001.Google Scholar
  23. [23]
    T. Kong and A. Rosenfeld. Digital topolgy: a comparison of the graph-based and topological approaches. In G. Reed, A. Roscoe, and R. Wachter, editors, Topology and Category Theory in Computer Science, pages 273–289, Oxford, 1991. Oxford University Press.Google Scholar
  24. [24]
    V. A. Kovalevsky. Digital Geometry Based on the Topology of Abstract Cellular Complexes. In J.-M. Chassery, J. Francon, A. Montanvert, and J.-P. Réveillès, editors, Géometrie Discrète en Imagery, Fondements et Applications, pages 259–284, Strasbourg, France, September 1993.Google Scholar
  25. [25]
    W. G. Kropatsch. Preserving contours in dual pyramids. In Proc. 9th International Conference on Pattern Recognition, pages 563–565, Rome, Italy, November 1988. IEEE Comp.Soc.Google Scholar
  26. [26]
    W. G. Kropatsch. Property Preserving Hierarchical Graph Transformations. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Advances in Visual Form Analysis, pages 340–349. World Scientific Publishing Company, 1997.Google Scholar
  27. [27]
    W. G. Kropatsch. From equivalent weighting functions to equivalent contraction kernels. In E. Wenger and L. I. Dimitrov, editors, Digital Image Processing and Computer Graphics (DIP-97): Applications in Humanities and Natural Sciences, volume 3346, pages 310–320. SPIE, 1998.Google Scholar
  28. [28]
    W. G. Kropatsch, A. Leonardis, and H. Bischof. Hierarchical, adaptive and robust methods for image understanding. Surveys on Mathematics for Industry, No. 9:pp. 1–47, 1999.Google Scholar
  29. [29]
    W. G. Kropatsch and H. Macho. Finding the structure of connected components using dual irregular pyramids. In Cinquième Colloque DGCI, pages 147–158. LLAIC1, Université d’Auvergne, ISBN 2-87663-040-0, September 1995.Google Scholar
  30. [30]
    S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-11(No. 7):pp. 674–693, July 1989.zbMATHCrossRefGoogle Scholar
  31. [31]
    P. Meer, C. A. Sher, and A. Rosenfeld. The chain pyramid: Hierarchical contour processing. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12(No.4):pp.363–376, April 1990.CrossRefGoogle Scholar
  32. [32]
    P. F. Nacken. Image segmentation by connectivity preserving relinking in hierarchical graph structures. Pattern Recognition, 28(6):907–920, June 1995.CrossRefGoogle Scholar
  33. [33]
    A. Rosenfeld, editor. Multiresolution Image Processing and Analysis. Springer, Berlin, 1984.zbMATHGoogle Scholar
  34. [34]
    A. Rosenfeld and A. Nakamura. Local deformations of digital curves. Pattern Recognition Letters, 18:613–620, 1997.CrossRefGoogle Scholar
  35. [35]
    J. K. Udupa. Go Digital, Go Fuzzy. In G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Proceedings DGCI’00, Discrete Geometry for Computer Imagery, volume Vol. 1953 of Lecture Notes in Computer Science, pages 284–295, Uppsala, Sweden, 2000. Springer, Berlin Heidelberg, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Walter G. Kropatsch
    • 1
  1. 1.Institute for Computer-Aided Automation Pattern Recognition and Image Processing GroupVienna Univ. of TechnologyAustria

Personalised recommendations