Advertisement

The Demonic Product of Probabilistic Relations

  • Ernst-Erich Doberkat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2303)

Abstract

The demonic product of two probabilistic relations is defined and investigated. It is shown that the product is stable under bisimulations when the mediating object is probabilistic,and that under some mild conditions the non-deterministic fringe of the probabilistic relations behaves properly: the fringe of the product equals the demonic product of the fringes.

Keywords

Probabilistic relations bisim ulation demonic product concurrency 

References

  1. 1.
    S. Abramsky, R. Blute, and P. Panangaden. Nuclear and trace ideal in tensored *-categories. Technical report, School of Computer Science, McGill University, Montreal, June 1998.Google Scholar
  2. 2.
    C. Brink, W. Kahl, and G. Schmidt, editors. Relational Methods in Computer Science. Advances in Computing Science. Springer-Verlag, Wien, New York, 1997.Google Scholar
  3. 3.
    E. P. de Vink and J. J. M. M. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic approach. Technical Report SEN-R9825, CWI, Amsterdam, 1998.Google Scholar
  4. 4.
    J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation of labelled markovprocesses. Technical report, School of Computer Science, McGill University, Montreal, 1998.Google Scholar
  5. 5.
    J. Desharnais, A. Mili, and T. T. Nguyen. Refinement and demonic semantics. In [2],pages 166–184.Google Scholar
  6. 6.
    E.-E. Doberkat. Stochastic Automata — Nondeterminism, Stability, and Prediction, volume 113 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1981.Google Scholar
  7. 7.
    E. E. Doberkat. The converse of a probabilistic relation. Technical Report 113, Chair for Software Technology, Univ ersity of Dortmund, June 2001.Google Scholar
  8. 8.
    E.-E. Doberkat. The demonic product of probabilistic relations. Technical Report 116, Chair for Software Technology, Univ ersity of Dortmund, September 2001. Available as Technische-Berichte/Doberkat SWT-Memo-116.ps.gz in directory ftp://ls10-www.cs.uni-dortmund.de/pub/.
  9. 9.
    E.-E. Doberkat. The hierarchical refinement of probabilistic relations. Technical Report 118, Chair for Software Technology, Univ ersity of Dortmund, November 2001.Google Scholar
  10. 10.
    M. Giry. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathematics, pages 68–85, Berlin, 1981. Springer-Verlag.Google Scholar
  11. 11.
    C. J. Himmelberg. Measurable relations. Fund. Math.,87:53–72,1975.zbMATHMathSciNetGoogle Scholar
  12. 12.
    S. Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2 edition, 1997.Google Scholar
  13. 13.
    K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94:1–28, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. Milner. A Calculus of CommunicatingSystems. Number 92 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1980.Google Scholar
  15. 15.
    L. S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    P. Panangaden. Probabilistic relations. In C. Baier, M. Huth, M. Kwiatkowska, and M. Ryan, editors, Proc. PROBMIV, pages 59–74, 1998. Also available from the School of Computer Science, McGill University, Montreal.Google Scholar
  17. 17.
    K. R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, New York, 1967.zbMATHGoogle Scholar
  18. 18.
    J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Technical Report CS-R9652, CWI, Amsterdam, 1996.Google Scholar
  19. 19.
    S. M. Srivastava. A Course on Borel Sets. Number 180 in Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ernst-Erich Doberkat
    • 1
  1. 1.Chair for Software TechnologyUniversity of DortmundDortmund

Personalised recommendations