Advertisement

Linearity and Bisimulation

  • Nobuko Yoshida
  • Kohei Honda
  • Martin Berger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2303)

Abstract

We introduce a theory of weak bisimilarity for the π-calculus with linear type structure [35] in which we abstract away not only τ - actions but also non-τ actions which do not affect well-typed environments. This gives an equivalence far larger than the standard bisimilarity while retaining semantic soundness. The congruency of the bisimilarity relies on a liveness property at linear channels ensured by typing. The theory is consistently extendible to settings which involve nontermination, nondeterminism and state. As an application we develop a behavioural theory of secrecy for the π-calculus which ensures secure information flow for a strictly greater set of processes than the type-based approach in [20][23].

Keywords

Secure Information Parallel Composition Channel Type Liveness Property Secrecy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abadi, M., Secrecy in programming-language semantics, MFPS XV, ENTCS, 20 (April 1999).Google Scholar
  3. 3.
    Abadi, M., Banerjee, A., Heintze, N. and Riecke, J., A core calculus of dependency, POPL’99, ACM, 1999.Google Scholar
  4. 4.
    Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF. Info. & Comp. 163(2000), 409–470.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boreale, M. and Sangiorgi, D. Bisimulation in name-passing calculi without matching. LICS’98, IEEE, 1998.Google Scholar
  6. 6.
    Berger, M., Honda, K. and Yoshida, N., Sequentiality and the π-Calculus, TLCA’01, LNCS 2044, 29–45, Springer, 2001. The full version available at http://www.dcs.qmw.ac.uk/~kohei.Google Scholar
  7. 7.
    Boudol, G. and Castellani, I., Noninterference for Concurrent Programs, ICALP’01, LNCS, Springer, 2001.Google Scholar
  8. 8.
    Denning, D. and Denning, P., Certification of programs for secure information flow. Communication of ACM, ACM, 20:504–513, 1997.CrossRefGoogle Scholar
  9. 9.
    Focardi, R. and Gorrieri, R., The compositional security checker: A tool for the verification of information flow security properties. IEEE Transactions on Software Engineering, 23(9), 1997.Google Scholar
  10. 10.
    Focardi, R., Gorrieri, R. and Martinelli, F., Non-interference for the analysis of cryptographic protocols. ICALP’00, LNCS 1853, Springer, 2000.Google Scholar
  11. 11.
    Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions, ESOP’99, LNCS 1576, 74–90, Springer, 1999.Google Scholar
  12. 12.
    Girard, J.-Y., Linear Logic, TCS, 50, 1–102, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hennessy, M. and Rathke, J., Typed behavioural equivalences for processes in the presence of subtyping, To appear in Proc. CATS 2002.Google Scholar
  14. 14.
    Hennessy, M. and Riely, J., Information flow vs resource access in the asynchronous pi-calculus, ICALP’00, LNCS 1853, 415–427, Springer, 2000.Google Scholar
  15. 15.
    Honda, K., Types for Dyadic Interaction. CONCUR’93, LNCS 715, 509–523, 1993.Google Scholar
  16. 16.
    Honda, K., Composing Processes, POPL’96, 344–357, ACM, 1996.Google Scholar
  17. 17.
    Honda, K., Notes on Linear Typing for Free Outputs, May, 2001.Google Scholar
  18. 18.
    Honda, K., Kubo, M. and Vasconcelos, V., Language Primitives and Type Discipline for Structured Communication-Based Programming. ESOP’98, LNCS 1381, 122–138. Springer-Verlag, 1998.Google Scholar
  19. 19.
    Honda, K. and Tokoro, M. An object calculus for asynchronous communication. ECOOP’91, LNCS 512, 133–147, 1991.Google Scholar
  20. 20.
    Honda, K., Vasconcelos, V. and Yoshida, N., Secure Information Flow as Typed Process Behaviour, ESOP’00, LNCS 1782, 180–199, 2000.Google Scholar
  21. 21.
    Honda, K. and Yoshida, N. On Reduction-Based Process Semantics. TCS, 151, 437–486, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Honda, K. and Yoshida, N., Game-theoretic analysis of call-by-value computation. TCS, 221 (1999), 393–456, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Honda, K. and Yoshida, N., A uniform type structure for secure information flow, To appear in POPL’02, ACM, 2002.Google Scholar
  24. 24.
    Hyland, M. and Ong, L., “On Full Abstraction for PCF”: I, II and III. Info. & Comp. 163(2000), 285–408, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kobayashi, N., Pierce, B., and Turner, D., Linearity and the π-calculus, POPL’96, 358–371, 1996.Google Scholar
  26. 26.
    Milner, R., Functions as Processes. MSCS, 2(2), 119–146, CUP, 1992.zbMATHMathSciNetGoogle Scholar
  27. 27.
    Milner, R. and Sangiorgi, D., Barbed Bisimulation, ICALP’92, LNCS 623, 685–695, Springer, 1992.Google Scholar
  28. 28.
    Philippou, A. and Walker, D., On confluence in the π-Calculus, ICALP’97, LNCS 1256, 314–324, Springer, 1997.Google Scholar
  29. 29.
    Sangiorgi, D. π-calculus, internal mobility, and agent-passing calculi. TCS, 167(2):235–271, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sangiorgi, D., The name discipline of uniform receptiveness, TCS, 221, 457–493, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sabelfield, A. and Sands, D. A per model of secure information flow in sequential programs. ESOP’99, LNCS 1576, Springer, 1999.Google Scholar
  32. 32.
    Smith, G. and Volpano, D., Secure information flow in a multi-threaded imperative language, 355–364, POPL’98, ACM, 1998.Google Scholar
  33. 33.
    Vasconcelos, V., Typed concurrent objects. ECOOP’94, LNCS 821, 100–117. Springer, 1994.Google Scholar
  34. 34.
    Yoshida, N. Graph Types for Mobile Processes. FST/TCS’16, LNCS 1180, 371–386, Springer, 1996.Google Scholar
  35. 35.
    Yoshida, N., Berger, M. and Honda, K., Strong Normalisation in the π-Calculus, LICS’01, IEEE, 2001. The full version as MCS technical report, 2001-09, University of Leicester, 2001. Available at http://www.mcs.le.ac.uk/~nyoshida/paper.html.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Nobuko Yoshida
    • 1
  • Kohei Honda
    • 2
  • Martin Berger
    • 2
  1. 1.University of LeicesterUK
  2. 2.Queen MaryUniversity of LondonUK

Personalised recommendations