Skip to main content

On the Optimal Control Law for Linear Discrete Time Hybrid Systems

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2289)

Abstract

In this paper we study the solution to optimal control problems for discrete time linear hybrid systems. First, we prove that the closed form of the state-feedback solution to finite time optimal control based on quadratic or linear norms performance criteria is a time-varying piecewise afine feedback control law. Then, we give an insight into the structure of the optimal state-feedback solution and of the value function. Finally, we briefly describe how the optimal control law can be computed by means of multiparametric programming.

Keywords

  • Optimal Control Problem
  • Hybrid System
  • Model Predictive Control
  • Switching Sequence
  • 38th IEEE Conf

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45873-5_11
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45873-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Acevedo and E.N. Pistikopoulos. A multiparametric programming approach for linear process engineering problems under uncertainty. Ind. Eng. Chem. Res., 36:717–728, 1997.

    CrossRef  Google Scholar 

  2. A. Bemporad, F. Borrelli, and M. Morari. Explicit solution of constrained 1/∞ norm model predictive control. In Proc. 39th IEEE Conf. on Decision and Control, December 2000.

    Google Scholar 

  3. A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal controllers for hybrid systems. In Proc. American Contr. Conf., pages 1190–1194, Chicago, IL, June 2000.

    Google Scholar 

  4. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability of piecewise afine and hybrid systems. IEEE Trans. Automatic Control, 45(10):1864–1876, 2000.

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3):407–427, March 1999.

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. A. Bemporad, F.D. Torrisi, and M. Morari. Optimization-based verification and stability characterization of piecewise afine and hybrid systems. In B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and Control, volume 1790 of Lecture Notes in Computer Science, pages 45–58. Springer Verlag, 2000.

    CrossRef  Google Scholar 

  8. F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat. A hybrid approach to traction control. In A. Sangiovanni-Vincentelli and M.D. Di Benedetto, editors, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science. Springer Verlag, 2001.

    Google Scholar 

  9. F. Borrelli, A. Bemporad, and M. Morari. A geometric algorithm for multiparametric linear programming. Technical Report AUT00-06, Automatic Control Laboratory, ETH Zurich, Switzerland, February 2000.

    Google Scholar 

  10. M.S. Branicky and S.K. Mitter. Algorithms for optimal hybrid control. In Proc. 34th IEEE Conf. on Decision and Control, New Orleans, USA, December 1995.

    Google Scholar 

  11. M.S. Branicky and G. Zhang. Solving hybrid control problems: Level sets and behavioral programming. In Proc. American Contr. Conf., Chicago, Illinois USA, June 2000.

    Google Scholar 

  12. M. Buss, O. von Stryk, R. Bulirsch, and G. Schmidt. Towards hybrid optimal control. at, 48:448–459, 2000.

    Google Scholar 

  13. B. De Schutter and B. De Moor. The extended linear complementarity problem and the modeling and analysis of hybrid systems. In P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid Systems V, volume 1567 of Lecture Notes in Computer Science, pages 70–85. Springer, 1999.

    CrossRef  Google Scholar 

  14. B. De Schutter and T. van den Boom. Model predictive control for max-plus-linear systems. In Proc. American Contr. Conf., pages 4046–4050, 2000.

    Google Scholar 

  15. V. Dua and E.N. Pistikopoulos. An algorithm for the solution of multiparametric mixed integer linear programming problems. Annals of Operations Research, to appear.

    Google Scholar 

  16. A V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press, London, U.K., 1983.

    MATH  Google Scholar 

  17. T. Gal. Postoptimal Analyses, Parametric Programming, and Related Topics. de Gruyter, Berlin, 2nd ed. edition, 1995.

    Google Scholar 

  18. K. Gokbayrak and C.G. Cassandras. A hierarchical decomposition method for optimal control of hybrid systems. In Proc. 38th IEEE Conf. on Decision and Control, pages 1816–1821, Phoenix, AZ, December 1999.

    Google Scholar 

  19. A Hassibi and S. Boyd. Quadratic stabilization and control of piecewise-linear systems. In Proc. American Contr. Conf., Philadelphia, Pennsylvania USA, June 1998.

    Google Scholar 

  20. S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In Proc. 38th IEEE Conf. on Decision and Control, pages 3972–3976, Phoenix, AZ, December 1999.

    Google Scholar 

  21. W.P.M.H. Heemels. Linear complementarity systems: a study in hybrid dynamics. PhD thesis, Dept. of Electrical Engineering, Eindhoven University of Technology, The Netherlands, 1999.

    Google Scholar 

  22. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity systems. SIAM Journal on Applied Mathematics, 60(4):1234–1269, 2000.

    MATH  CrossRef  MathSciNet  Google Scholar 

  23. W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynamical models. Automatica, 37(7):1085–1091, July 2001.

    MATH  CrossRef  Google Scholar 

  24. M. Johannson and A. Rantzer. Computation of piece-wise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automatic Control, 43(4):555–559, 1998.

    CrossRef  Google Scholar 

  25. K H Johansson, M Egerstedt, J Lygeros, and S Sastry. On the regularization of Zeno hybrid automata. System & Control Letters, 38:141–150, 1999.

    MATH  CrossRef  MathSciNet  Google Scholar 

  26. J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for hybrid systems. Automatica, 35(3):349–370, 1999.

    MATH  CrossRef  MathSciNet  Google Scholar 

  27. D. Mignone, G. Ferrari-Trecate, and M. Morari. Stability and stabilization of piecewise afine and hybrid systems: An LMI approach. In Proc. 39th IEEE Conf. on Decision and Control, December 2000.

    Google Scholar 

  28. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

    Google Scholar 

  29. B. Piccoli. Necessary conditions for hybrid optimization. In Proc. 38th IEEE Conf. on Decision and Control, Phoenix, Arizona USA, December 1999.

    Google Scholar 

  30. P. Riedinger, F. Kratz, C. Iung, and C. Zanne. Linear quadratic optimization for hybrid systems. In Proc. 38th IEEE Conf. on Decision and Control, P hoenix, Arizona USA, December 1999.

    Google Scholar 

  31. E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans. Automatic Control, 26(2):346–358, April 1981.

    MATH  CrossRef  MathSciNet  Google Scholar 

  32. H.J. Sussmann. A maximum principle for hybrid optimal control problems. In Proc. 38th IEEE Conf. on Decision and Control, Phoenix, Arizona USA, December 1999.

    Google Scholar 

  33. C.J. Tomlin, J. Lygeros, and S.S. Sastry. A game theoretic approach to controller design for hybrid systems. Proceeding of IEEE, 88, July 2000.

    Google Scholar 

  34. F.D. Torrisi, A. Bemporad, and D. Mignone. HYSDEL-A language for describing hybrid systems. Technical Report AUT00-03, ETH Zurich, 2000. http://control.ethz.ch/~hybrid/hysdel.

  35. A.J. van der Schaft and J.M. Schumacher. Complementarity modelling of hybrid systems. IEEE Trans. Automatic Control, 43:483–490, 1998.

    MATH  CrossRef  Google Scholar 

  36. H.P. Williams. Model Building in Mathematical Programming. John Wiley &Sons, Third Edition, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bemporad, A., Borrelli, F., Morari, M. (2002). On the Optimal Control Law for Linear Discrete Time Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds) Hybrid Systems: Computation and Control. HSCC 2002. Lecture Notes in Computer Science, vol 2289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45873-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45873-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43321-7

  • Online ISBN: 978-3-540-45873-9

  • eBook Packages: Springer Book Archive