Machine Recognition of Printed Kannada Text

  • B. Vijay Kumar
  • A. G. Ramakrishnan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2423)


This paper presents the design of a full fledged OCR system for printed Kannada text. The machine recognition of Kannada characters is dificult due to similarity in the shapes of different characters, script complexity and non-uniqueness in the representation of diacritics. The document image is subject to line segmentation, word segmentation and zone detection. From the zonal information, base characters, vowel modifiers and consonant conjucts are separated. Knowledge based approach is employed for recognizing the base characters. Various features are employed for recognising the characters. These include the coefficients of the Discrete Cosine Transform, Discrete Wavelet Transform and Karhunen-Louve Transform. These features are fed to different classifiers. Structural features are used in the subsequent levels to discriminate confused characters. Use of structural features, increases recognition rate from 93% to 98%. Apart from the classical pattern classification technique of nearest neighbour, Artificial Neural Network (ANN) based classifiers like Back Propogation and Radial Basis Function (RBF) Networks have also been studied. The ANN classifiers are trained in supervised mode using the transform features. Highest recognition rate of 99% is obtained with RBF using second level approximation coefficients of Haar wavelets as the features on presegmented base characters.


Radial Basis Function Discrete Cosine Transform Discrete Wavelet Transform Near Neighbour Base Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chaudhuri, B.B., Pal, U.: A Complete Printed Bangla OCR System. Pattern Recognition, Vol. 31, No. 5 (1998) 531–549CrossRefGoogle Scholar
  2. 2.
    Lu, Y.I.: Machine Printed Character Segmentation — An Overview. Pattern Recognition, Vol. 28, No. 1 (1995) 67–80CrossRefGoogle Scholar
  3. 3.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison Wesley, New York (1993)Google Scholar
  4. 4.
    Haykin, S.: Neural Networks. A Comprehensive Foundation. Pearson Education Asia (1999)Google Scholar
  5. 5.
    Jagadeesh, G.S., Gopinath, V.: Kantex, A Transliteration Package for Kannada. Kantex Manual. 1.00.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • B. Vijay Kumar
    • 1
  • A. G. Ramakrishnan
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations