Advertisement

Increasing the Number of Classifiers in Multi-classifier Systems: A Complementarity-Based Analysis

  • L. Bovino
  • G. Dimauro
  • S. Impedovo
  • G. Pirlo
  • A. Salzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2423)

Abstract

Complementarity among classifiers is a crucial aspect in classifier combination. A combined classifier is significantly superior to the individual classifiers only if they strongly complement each other. In this paper a complementarity-based analysis of sets of classifier is proposed for investigating the behaviour of multi-classifier systems, as new classifiers are added to the set. The experimental results confirm the theoretical evidence and allow the prediction of the performance of a multi-classifier system, as the number of classifiers increases.

References

  1. 1.
    Ley Xu, Adam Krzyzak, Ching Y-Suen, “Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition”, IEEE Transaction on Systems, Man and Cybernetics, Vol. 22, N. 3, 1992, pp. 418–435.CrossRefGoogle Scholar
  2. 2.
    L. Lam, Y.-S. Huang, C.Y. Suen, “Combination of Multiple Classifier Decision for Optical Character Recognition”, in Handbook of Character Recognition and Document Image Analysis, Eds. H. Bunke and P.S.P. Wang, World Scient. Publ., Singapore, 1997, pp.79–101.Google Scholar
  3. 3.
    D. Wolpert, “Stacked Generalization”, Neural Networks, Vol. 5, pp. 241–259, 1992.CrossRefGoogle Scholar
  4. 4.
    T.K. Ho, “Random Decision Forests”, Proc.ICDAR’ 95, Montreal,Canada, 1995, pp.278–282.Google Scholar
  5. 5.
    L. Breiman, “Bagging Predictors”, Machine Learning, Vol. 24, no. 2, pp. 123–140, 1996.zbMATHMathSciNetGoogle Scholar
  6. 6.
    R.E. Schapire,“The strength of weak Learnability”, Mach. Learning,Vol.5, pp.197–227, 1990.Google Scholar
  7. 7.
    G. Dimauro, S. Impedovo, G. Pirlo, A. Salzo, “Multiple Classifiers: a new methodology for the evaluation of the combination processes”, Progress in Handwriting Recognition, A.C. Downton and S. Impedovo eds., World Scientific, Singapore, pp. 329–335, 1995.Google Scholar
  8. 8.
    J. Kittler, M. Hatef, R.P.W. Duin and J. Matias, “On combining classifiers”, IEEE TPAMI, vol. 20, no. 3, pp. 226–239, 1998.Google Scholar
  9. 9.
    V. Di Lecce, G. Dimauro, A. Guerriero, S. Impedovo, G. Pirlo, A. Salzo, “Classifier Combination: The role of a-priori knowledge”, IWFHR VII, eds. L.R.B. Schomaker et al., 2000, Nijmegen: International Unipen Foundation Publishing, pp. 143–152.Google Scholar
  10. 10.
    E. Mandler and J. Schuermann, “Combining the Classification Results of independent classifiers based on the Dempster/Shafer theory of evidence”, in Pattern Recognition and Artificial Intelligence, eds. E.S. Gelsema et al., North Holland, Amsterdam, 1988, pp.381–393.Google Scholar
  11. 11.
    S. Impedovo and A. Salzo, “A new methodology for expert combination in multi-expert system designing”. In Lecture Notes in Computer Science, (vol. 1857), J. Kittler and F. Roli Eds., MCS2000, Cagliari, Italy, pp.230–239.Google Scholar
  12. 12.
    G. Dimauro, S. Impedovo, G. Pirlo, A. Salzo, “Automatic Bankchecks Processing: A New Engineered System”, Int. Journal of Pattern Recognition and Artificial Intelligence, Vol.11, N.4, World Scientific Publ.,Singapore, 1997, pp.1–38.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. Bovino
    • 2
  • G. Dimauro
    • 1
  • S. Impedovo
    • 1
  • G. Pirlo
    • 1
  • A. Salzo
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly
  2. 2.Consorzio Interuniversitario Nazionale per l’Informatica (CINI)BariItaly

Personalised recommendations