Skip to main content

Two-Step Processes and IR Recording in Photorefractive Crystals

  • Chapter
  • First Online:
Infrared Holography for Optical Communications

Part of the book series: Topics in Applied Physics ((TAP,volume 86))

Abstract

Two-step excitation processes have been used for hologram storage in photorefractive crystals. By this means the interference pattern can be formed with red or near—IR light and nondestructive readout of information is possible. Often shallow levels are involved in the holographic recording process in photorefractive crystals. The shallow levels can be populated by illumination with visible or UV pulses forming states with relatively long lifetimes, thus sensitizing the crystals for holographic recording with IR pulses. In LiNbO3 and LiTaO3 the most important shallow levels have been identified. They result from NbLi5+ and TaLi5+ antisite defects (Nb5+ or Ta5+ on Li+ site). The crystals can also be pre-illuminated with visible light from a cw argon laser or a xenon lamp and holograms can be recorded with red light from a laser diode. The sensitization process is possible for other photorefractive crystals, too. The holograms can be read nondestructively with IR light and can be erased with green light. The hologram lifetime is limited by electron tunneling or by an ionic conductivity. Lifetimes up to years can be achieved. Recording of components for telecommunication applications with IR light allows one to create reconfigurable and thus more versatile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Günter, J.-P. Huignard, (Eds.): Topics in Applied Physics: Photorefractive Materials and Their Applications II, Topics Appl. Phys. 62, (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  2. K. Buse, E. Krätzig: Inorganic Photorefractive Materials, in H. Coufal, D. Psaltis, G. Sincerbox (Eds.): Holographic Storage (Springer, Berlin, Heidelberg, 2000)

    Google Scholar 

  3. D. von derLinde, A. M. Glass, K. F. Rodgers: Multiphoton photorefractive processes for optical storage in LiNbO3, Appl. Phys. Lett. 25, 155 (1974)

    Article  ADS  Google Scholar 

  4. D. von der Linde, A. M. Glass, K. F. Rodgers: high-sensitivity optical recording in KTN by two-photon absorption, Appl. Phys. Lett. 26, 22 (1975)

    Article  ADS  Google Scholar 

  5. H. Vormann, E. Krätzig: Two-step excitation in LiTaO3:Fe for optical data storage, Solid State Commun. 49, 843 (1984)

    Article  ADS  Google Scholar 

  6. Y. Ming, E. Krätzig, R. Orlowski: Photorefractive effects in LiNbO3:Cr induced by two-step excitation, Phys. Status Solidi A 92, 221 (1985)

    Article  ADS  Google Scholar 

  7. A. Motes, J. J. Kim: Intensity-dependent absorption coefficient in photorefractive BaTiO3 crystals, J. Opt. Soc. Am. B 4, 1379 (1987)

    Article  ADS  Google Scholar 

  8. G. A. Brost, R. A. Motes, J. R. Rotgé: Intensity-dependent absorption and photorefractive effects in barium titanate, J. Opt. Soc. Am. B 5, 1879 (1988)

    Article  ADS  Google Scholar 

  9. L. Holtmann: A model for the nonlinear photoconductivity of BaTiO3, Phys. Status Solidi A 113, K89 (1989)

    Article  ADS  Google Scholar 

  10. L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, E. Krätzig, Photoconductivity and light-induced absorption in KNbO3:Fe, Appl. Phys. A 53, 81 (1991)

    Article  ADS  Google Scholar 

  11. K. Buse, E. Krätzig: Light-Induced Charge Transport in Photorefractive Crystals, in F. Yu, S. Yin: Photorefractive Optics: Materials, Properties and Applications (Academic Press, New York 2000)

    Google Scholar 

  12. K. Buse, E. Krätzig: Three-valence charge-transport model for explanation of the photorefractive effect, Appl. Phys. B 61, 27 (1995)

    Article  ADS  Google Scholar 

  13. K. Buse, A. Adibi, D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals, Nature 393, 665 (1998)

    Article  ADS  Google Scholar 

  14. K. Buse, L. Holtmann, E. Krätzig: Activation of BaTiO3 for infrared holographic recording, Opt. Commun. 85, 183 (1991)

    Article  ADS  Google Scholar 

  15. A. Gerwens, M. Simon, K. Buse, E. Krätzig: Activation of cerium-doped strontium barium niobate for infrared holographic recording, Opt. Commun. 135, 347 (1997)

    Article  ADS  Google Scholar 

  16. A. Kamshilin, M. P. Petrov: Infrared quenching of the photoconductivity and holographic data storage in Bi12SiO20, Sov. Solid State Phys. 23, 3110 (1981)

    Google Scholar 

  17. S. G. Odoulov, K. V. Shcherbin, A. N. Shumeljuk: Photorefractive recording in BTO in the near infrared, J. Opt. Soc. Am. B 11, 1780 (1994)

    Article  ADS  Google Scholar 

  18. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, I. M. Stoyka: Photorefraction in tin hypothiodiphosphate in the near infrared, J. Opt. Soc. Am. B 13, 2352 (1996)

    Article  ADS  Google Scholar 

  19. P. Pogany, H. J. Eichler, M. Hag Ali: Two-wave mixing gain enhancement in photorefractive CdZnTe:V by optically stimulated electron-hole resonance, J. Opt. Soc. Am. B 15, 2716 (1998)

    Article  ADS  Google Scholar 

  20. K. Shcherbin, F. Ramaz, B. Farid, B. Briat, H.-J. von Bardesleben: Photoinduced charge transfer processes in photorefractive CdTe:Ge, OSA TOPS 27, 54 (1999)

    Google Scholar 

  21. D. von der Linde, A. M. Glass: Photorefractive effects for reversible holographic storage of information, Appl. Phys. 8, 85 (1975)

    Article  ADS  Google Scholar 

  22. F. Jermann, J. Otten: Light-induced charge transport in LiNbO3:Fe at high light intensities, J. Opt. Soc. Am. B 10, 2085 (1993)

    Article  ADS  Google Scholar 

  23. M. Simon, F. Jermann, E. Krätzig: Intrinsic photorefractive centers in LiNbO3:Fe, Appl. Phys. B 61, 89 (1995)

    Article  ADS  Google Scholar 

  24. K. Buse, F. Jermann, E. Krätzig: Infrared holographic recording in LiNbO3: Cu, Appl. Phys. A 58, 191 (1994)

    Google Scholar 

  25. K. Buse, F. Jermann, E. Krätzig: Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu, Opt. Mater. 4, 237 (1995)

    Article  Google Scholar 

  26. J. Imbrock, S. Wevering, K. Buse, E. Krätzig: Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses, J. Opt. Soc. Am. B 16, 1302 (1999)

    Article  Google Scholar 

  27. A. M. Glass, D. von der Linde, T. J. Negran: High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett. 25, 233 (1974)

    Article  ADS  Google Scholar 

  28. Y. S. Bai, R. Kachru: Nonvolatile Holographic Storage with two-step recording in lithium niobate using cw lasers, Phys. Rev. Lett. 78, 2944 (1997)

    Article  ADS  Google Scholar 

  29. H. Guenther, G. Wittmann, R. M. Macfarlane, R. R. Neurgaonkar: Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3, Opt. Lett. 22, 1305 (1997)

    Article  ADS  Google Scholar 

  30. J. Imbrock, D. Kip, E. Krätzig: Nonvolatile holographic storage in iron-doped lithium tantalate with continuous wave laser light, Opt. Lett. 24, 1302 (1999)

    Article  ADS  Google Scholar 

  31. M. Horowitz, B. Fischer, Y. Barad, Y. Silberberg: Photorefractive effect in a BaTiO3 crystal in the 1.5 µm wavelength regime by two-photon absorption, Opt. Lett. 21, 1120 (1996)

    Article  ADS  Google Scholar 

  32. K. Oba, P.-C. Sun, Y. Fainman: Nonvolatile photorefractive spectral holography, Opt. Lett. 23, 915 (1998)

    Article  ADS  Google Scholar 

  33. V. Leyva, G. A. Rakuljic, B. O’Conner: Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm, Appl. Phys. Lett. 65, 1079 (1994)

    Article  ADS  Google Scholar 

  34. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera: A narrow-band interference filter with photorefractive LiNbO3, J. Phys. D: Appl. Phys. 27, 241 (1994)

    Article  ADS  Google Scholar 

  35. S. Breer, K. Buse: Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate, Appl. Phys. B 66, 339 (1998)

    Article  ADS  Google Scholar 

  36. S. Breer, H. Vogt, I. Nee, K. Buse: Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate, Electron. Lett. 34, 2419 (1999)

    Article  Google Scholar 

  37. J. J. Amodei, D. L. Staebler: Holographic pattern fixing in electro-optic crystals, Appl. Phys. Lett. 18, 540 (1971)

    Article  ADS  Google Scholar 

  38. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Krätzig: Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56, 1225 (1997)

    Article  ADS  Google Scholar 

  39. L. Arizmendi, E. M. Miguel-Sanz, M. Carrascosa: Lifetimes of thermally fixed holograms in LiNbO3:Fe crystals, Opt. Lett. 23, 960 (1998)

    Article  ADS  Google Scholar 

  40. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, Hydrogen as origin of thermal fixing in LiNbO3:Fe, Solid State Commun. 40, 543 (1981)

    Article  ADS  Google Scholar 

  41. I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, R. P. May: Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals, Phys. Rev. B 60, R9896 (1999)

    Article  ADS  Google Scholar 

  42. H. C. Külich: A new approach to read volume holograms at different wavelengths, Opt. Commun. 64, 407 (1987)

    Article  ADS  Google Scholar 

  43. I. Nee, M. Müller, K. Buse, E. Krätzig: Role of iron in lithium niobate crystals for the dark storage time of holograms, J. Appl. Phys. 88, 4282 (2000)

    Article  ADS  Google Scholar 

  44. Y. P. Yang, I. Nee, K. Buse, D. Psaltis: Ionic electronic dark decay of holograms in LiNbO3 crystals, Appl. Phys. Lett. 78, 4076 (2001)

    Article  ADS  Google Scholar 

  45. K. Buse: Light-induced charge transport processes in photorefractive crystals II: Materials, Appl. Phys. B 64, 391 (1997)

    Article  ADS  Google Scholar 

  46. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, C. Buchal: Photorefractive effect in proton-implanted Fe-doped KNbO3 waveguides at telecommunication wavelengths, J. Opt. Soc. Am. B 13, 2544 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krätzig, E., Buse, K. (2003). Two-Step Processes and IR Recording in Photorefractive Crystals. In: Boffi, P., Piccinin, D., Ubaldi, M.C. (eds) Infrared Holography for Optical Communications. Topics in Applied Physics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45852-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45852-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43314-9

  • Online ISBN: 978-3-540-45852-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics