A Short Note on the History of Graph Drawing

  • Eriola Kruja
  • Joe Marks
  • Ann Blair
  • Richard Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)


The origins of chart graphics (e.g., bar charts and line charts) are well known [30], with the seminal event being the publication of William Playfair’s (1759-1823) The Commercial and Political Atlas in London in 1786 [26]. However, the origins of graph drawing are not well known. Although Euler (1707-1783) is credited with originating graph theory in 1736 [12],[20], graph drawings were in limited use centuries before Euler’s time. Moreover, Euler himself does not appear to have made significant use of graph visualizations. Widespread use of graph drawing did not begin until decades later, when it arose in several distinct contexts. In this short note we present a selection of very early graph drawings; note the apparent absence of graph visualization in Euler’s work; and identify some early innovators of modern graph drawing.


Short Note Family Tree Graph Drawing Musical Interval Medieval Literature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Ahrens. Mathematische Unterhaltungen und Spiele. Druck und Verlag Von B.G. Teubner, Leipzig, 1901.zbMATHGoogle Scholar
  2. 2.
    Alfonso X, King of Castile and Leon. Libros del ajedrez, dados y tablas. 13th century.Google Scholar
  3. 3.
    S. Ammirato. Alberi genealogici, late 16th century. Biblioteca Riccardiana, Florence, Grandi formati 33, No. 67. Reproduced in [19], Fig. 6.Google Scholar
  4. 4.
    M. Ascher and R. Ascher. Code ofthe Quipu: A Study in Media, Mathematics, and Culture. University of Michigan Press, Ann Arbor, Michigan, 1981.Google Scholar
  5. 5.
    W. W. R. Ball. Mathematical Recreations and Essays. The MacMillan Company, New York, 1939. 11th Edition. First published in 1892.Google Scholar
  6. 6.
    Beatus of Liebana. Commentary on the Apocalypse of Saint John, 11th century. Diagram from the Bibliothéque Nationale, Paris, (MS. Lat. 8878, fols. 6v-7r). Reproduced in [33], p. 331.Google Scholar
  7. 7.
    N. L. Biggs and L. Wilson. Graph Theory 1736-1936. Clarendon Press, Oxford, 1976. An excellent secondary source on the history of graph theory.zbMATHGoogle Scholar
  8. 9.
    A. C. Brown. On the Theory of Isomeric Compounds. Transactions ofthe Royal Society Edinburgh, 23:707–719, 1864.Google Scholar
  9. 10.
    A. Cayley. On the Theory of the Analytical Forms Called Trees. Philosophical Magazine, 4(13):172–176, 1857.Google Scholar
  10. 11.
    M. Édouard Lucas. Récréations Mathématiques.Gauthier-Villars, Imprimeur-Libraire, Paris, 1882.Google Scholar
  11. 12.
    L. Euler. Solutio Problematis ad Geometriam Situs Pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736. Also in Opera Omnia (1) 7, 1923, pp. 1-10. An English translation can be found in [7], pp. 3-8.Google Scholar
  12. 13.
    L. Euler. Solution d’une Question Curieuse qui ne Paroit Soumise a Aucune Analyse. Mémoires de l’Académie des Sciences de Berlin, 15:310–337, 1759. Also in Opera Omnia (1) 7, 1923, p. 26-56.Google Scholar
  13. 14.
    B. J. Ford. Images of Science: A History of Scientific Illustration. Oxford University Press, New York, 1993.Google Scholar
  14. 15.
    E. Frankland. Lecture Notes for Chemical Students. London, 1866. An English translation can be found in [7], pp. 58–60.Google Scholar
  15. 16.
    C. C. Gillispie. Dictionary of Scientific Biography. Charles Scribner’s Sons, New York, 1973.Google Scholar
  16. 17.
    W. R. Hamilton. The Icosian Game, instruction leaflet, 1859. A copy of this leaflet can be found in [7], pp. 32–35.Google Scholar
  17. 18.
    R. J. Haüy. Essai d’une théorie sur la structure des crystaux. 1784. A copy of the drawing can be found in [14], p. 137.Google Scholar
  18. 19.
    C. Klapisch-Zuber. The genesis of the family tree. In W. Kaiser, editor, I Tatti Studies: Essays in the Renaissance, Volume Four. Leo S. Olschki, Florence, Italy, 1991.Google Scholar
  19. 20.
    D. König. Theorie der Endlichen und Unendlichen Graphen. Akademische Verlagsgesellschaft M.B.H., Leipzig, 1936. Also available in English from Birkhäuser Boston, 1990.Google Scholar
  20. 21.
    W. G. Leibniz. Letter to Christiaan Huygens, September 8, 1679. In I. Gerhardt, editor, Leibnizens Mathematische Schriften, volume 2. A. Asher and Co., 1850.Google Scholar
  21. 22.
    J. B. Listing. Vorstudien zur Topologie. Göttinger Studien, 1:811–875, 1847. An English translation can be found in [7], pp. 14-16.Google Scholar
  22. 23.
    J. E. Murdoch. Album of Scienc e-Antiquity and the Middle Ages. Charles Scribner’s Sons, New York, 1984. An excellent secondary source for scientific illustration in ancient and medieval times.Google Scholar
  23. 24.
    H. J. R. Murray. A History of Board Games Other Than Chess. Oxford University Press, Oxford, England, 1952.Google Scholar
  24. 25.
    H. Parker. Ancient Ceylon: An Account of the Aborigines and of Part of the Early Civilisation. Luzac& Co., London, 1909.Google Scholar
  25. 26.
    W. Playfair. The Commercial and Political Atlas. London, 1786.Google Scholar
  26. 27.
    H. Sachs, M. Stiebitz, and R. J. Wilson. An historical note: Euler’s Königsberg letters. Journal of Graph Theory, 12(1):133–139, 1988.CrossRefMathSciNetGoogle Scholar
  27. 28.
    J. Stalham, late 15th century. English Public Records Office, Ref. No. REQ2/26/48. Thanks to Bob O’Hara for researching this and other documents on our behalf at the PRO.Google Scholar
  28. 29.
    J. J. Sylvester. Chemistry and Algebra. Nature, 17:284, 1877–8.Google Scholar
  29. 30.
    L. Tilling. Early experimental graphs. British Journal for the History of Science, 8:193–213, 1975.CrossRefGoogle Scholar
  30. 31.
    A.-T. Vandermonde. Remarques sur les Problèmes de Situation. Histoire de l’Académie des Sciences (Paris), 1771. An English translation can be found in [7], pp. 22–26.Google Scholar
  31. 32.
    R. J. Wilson. An Eulerian trail through Königsberg. Journal of Graph Theory, 10(3):265–275, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 33.
    D. Woodward. Medieval mappaemundi. In J. B. Harley and D. Woodward, editors, The History of Cartography, Volume 1: Cartography in Prehistoric, Ancient, and Medieval Europe and the Mediterranean. The University of Chicago Press, Chicago & London, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Eriola Kruja
    • 1
  • Joe Marks
    • 2
  • Ann Blair
    • 1
  • Richard Waters
    • 2
  1. 1.Harvard UniversityCambridge
  2. 2.MERL — Mitsubishi Electric Research LaboratoriesCambridge

Personalised recommendations