Skip to main content

Axiomatising Tree-Interpretable Structures

  • Conference paper
  • First Online:
STACS 2002 (STACS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2285))

Included in the following conference series:

Abstract

Generalising the notion of a prefix-recognisable graph to arbitrary relational structures we introduce the class of tree-interpretable structures.We prove that every tree-interpretable structure is finitely axiomatisable in guarded second-order logic with cardinality quantifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Barthelmann, On equational simple graphs, Tech. Rep. 9, Universität Mainz, Institut für Informatik, 1997.

    Google Scholar 

  2. —, When can an equational simple graph be generated by hyperedge replacement?, LNCS, 1450 (1998), pp. 543–552.

    Google Scholar 

  3. A. Blumensath, Automatic Structures, Diploma Thesis, RWTH Aachen, 1999.

    Google Scholar 

  4. —, Axiomatising tree-interpretable structures, Tech. Rep. AIB-10-2001, RWTH Aachen, LuFG Mathematische Grundlagen der Informatik, 2001.

    Google Scholar 

  5. A. Blumensath and E. Grädel, Automatic structures, in Proc. 15th IEEE Symp. on Logic in Computer Science, 2000, pp. 51–62.

    Google Scholar 

  6. O. Burkart, Model checking rationally restricted right closures of recognizable graphs, ENTCS, 9 (1997).

    Google Scholar 

  7. D. Caucal, On infinite transition graphs having a decidable monadic theory, LNCS, 1099 (1996), pp. 194–205.

    Google Scholar 

  8. B. Courcelle, The monadic second-order logic of graphs II: In finite graphs of bounded width, Math. System Theory, 21 (1989), pp. 187–221.

    Article  MATH  MathSciNet  Google Scholar 

  9. —, The monadic second-order logic of graphs IV: Definability properties of equational graphs, Annals of Pure and Applied Logic, 49 (1990), pp. 193–255.

    Article  MATH  MathSciNet  Google Scholar 

  10. —, The monadic second-order logic of graphs VII: Graphs as relational structures, Theoretical Computer Science, 101 (1992), pp. 3–33.

    Article  MATH  MathSciNet  Google Scholar 

  11. —, Structural properties of context-free sets of graphs generated by vertex replacement, Information and Computation, 116 (1995), pp. 275–293.

    Article  MATH  MathSciNet  Google Scholar 

  12. —, Clique-width of countable graphs: A compactness property. unpublished, 2000.

    Google Scholar 

  13. Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, Handbook of Recursive Mathematics, North-Holland, 1998.

    Google Scholar 

  14. E. Grädel, C. Hirsch, and M. Otto, Back and forth between guarded and modal logics, in Proc. 15th IEEE Symp. on Logic in Computer Science, 2000, pp. 217–228.

    Google Scholar 

  15. B. Khoussainov and A. Nerode, Automatic presentations of structures, LNCS, 960 (1995), pp. 367–392.

    Google Scholar 

  16. G. Kuper, L. Libkin, and J. Paredaens, Constraint Databases, Springer-Verlag, 2000.

    Google Scholar 

  17. O. Kupferman and M. Y. Vardi, An automata-theoretic approach to reasoning about infinite-state systems, LNCS, 1855 (2000), pp. 36–52.

    Google Scholar 

  18. C. Morvan, On rational graphs, LNCS, 1784 (1996), pp. 252–266.

    Google Scholar 

  19. D. E. Muller and P. E. Schupp, Groups, the theory of ends, and context-free languages, J. of Computer and System Science, 26 (1983), pp. 295–310.

    Article  MATH  MathSciNet  Google Scholar 

  20. —, The theory of ends, pushdown automata, and second-order logic, Theoretical Computer Science, 37 (1985), pp. 51–75.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Pélecq, Isomorphismes et automorphismes des graphes context-free, équationnels et automatiques, Ph. D. Thesis, Université Bordeaux I, 1997.

    Google Scholar 

  22. G. Sénizergues, Decidability of bisimulation equivalence for equational graphs of finite out-degree, in Proc. 39th Annual Symp. on Foundations of Computer Science, 1998, pp. 120–129.

    Google Scholar 

  23. C. Stirling, Decidability of bisimulation equivalence for pushdown processes. unpublished, 2000.

    Google Scholar 

  24. W. Thomas, Languages, automata, and logic, in Handbook of Formal Languages, G. Rozenberg and A. Salomaa, eds., vol. 3, Springer, New York, 1997, pp. 389–455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blumensath, A. (2002). Axiomatising Tree-Interpretable Structures. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-45841-7_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43283-8

  • Online ISBN: 978-3-540-45841-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics