Kinetics and Modeling of Anaerobic Digestion Process

  • Hariklia N. Gavala
  • Irini Angelidaki
  • Birgitte K. Ahring
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 81)


Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, the first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other. The combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones.


Anaerobic digestion Kinetics Modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gujer W, Zehnder AJB (1983) Water Science and Technology 15:127Google Scholar
  2. 2.
    Pavlostathis SG, Giraldo-Gomez E (1991) Water Science and Technology 24:35Google Scholar
  3. 3.
    Pavlostathis SG, Giraldo-Gomez E (1991) Critical Reviews in Environmental Control 21:411CrossRefGoogle Scholar
  4. 4.
    Lyberatos G, Skiadas IV (1999) Global Nest: the International Journal 1:63Google Scholar
  5. 5.
    Gottschalk G (1986) Nutrition of bacteria. In: Bacterial metabolism. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  6. 6.
    Gottschalk G (1986) Bacterial fermentations. In: Bacterial metabolism. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  7. 7.
    Monod J (1949) Ann Rev Microbiol 3:371CrossRefGoogle Scholar
  8. 8.
    McCarty PL (1966) Kinetics of waste assimilation in anaerobic treatment. In: Developments in Industrial Microbiology. American Institute of Biological Sciences, Washington DCGoogle Scholar
  9. 9.
    Moser H (1958) Carnegie Institute Washington Publ. No. 614Google Scholar
  10. 10.
    Contois DE (1959) Journal of General Microbiology 21:40Google Scholar
  11. 11.
    Grau P, Dohanyos M, Chubota J (1975) Water Res 9:637CrossRefGoogle Scholar
  12. 12.
    Chen YR, Hashimoto AG (1978) Biotechnology And Bioengineering Symp 8:269Google Scholar
  13. 13.
    Bitton G (1994) Anaerobic digestion of wastewater and sludge. In: Wastewater microbiology. Wiley-Liss, New YorkGoogle Scholar
  14. 14.
    Haldane JBS (1930) Enzymes. Longmans, LondonGoogle Scholar
  15. 15.
    Andrews JF (1969) J Sanit Engng Div Am Soc Civ Engrs SA1:95Google Scholar
  16. 16.
    Ierusalimsky ND (1967) Bottle-necks in metabolism as growth rate controlling factors. In: Powell EO, Evans CGT, Strange RE, Tempest DW (eds), Microbial Physiology and Continuous Culture, 3rd International Symposium. Her Majesty’s Stationery Office, LondonGoogle Scholar
  17. 17.
    Dinopoulou G, Sterritt RM, Lester JN (1988) Biotechnol Bioeng 31:969CrossRefGoogle Scholar
  18. 18.
    Mosche M, Jordening HJ (1999) Water Res 33:2545CrossRefGoogle Scholar
  19. 19.
    Eastman JA, Ferguson JF (1981) J WPCF 53:352Google Scholar
  20. 20.
    McCarty PL, Mosey FE (1991) Water Science and Technology 24:17Google Scholar
  21. 21.
    Vavilin VA, Rytov SV, Lokshina LYa (1996) Bioresource Technol 56:229CrossRefGoogle Scholar
  22. 22.
    Miron Y, Zeeman G, van Lier JB, Lettinga G (2000) Water Res 34:1705CrossRefGoogle Scholar
  23. 23.
    Schober G, Schaefer J, Schmid-Staiger U, Troesch W (1999) Water Res 33:854CrossRefGoogle Scholar
  24. 24.
    Vavilin VA, Rytov SV, Lokshina LYa, Rintala JA, Lyberatos G (2001) Water Res 35:4247CrossRefGoogle Scholar
  25. 25.
    Pfeffer JT (1968) J Water Pollution Control Federation 40:1933Google Scholar
  26. 26.
    Pfeffer JT (1974) BioTechnol and Bioengineering 26:771CrossRefGoogle Scholar
  27. 27.
    Foree EG, McCarty PL (1969) Proc 24th Ind Waste Conf, Purdue University 13Google Scholar
  28. 28.
    O’Rourke JT (1968) PhD thesis, Stanford University, CaliforniaGoogle Scholar
  29. 29.
    Ghosh S (1981) BioTechnol And Bioengineering Symp 11:301Google Scholar
  30. 30.
    Doyle O, O’Malley J, Clausen E, Gaddy J (1983) Kinetic improvements in the production of methane from cellulosic residues. In: Energy from biomass and wastes. 7:546Google Scholar
  31. 31.
    Gavala HN, Skiadas IV, Lyberatos G (1999) Water Science and Technol 40:339CrossRefGoogle Scholar
  32. 32.
    Gavala HN, Lyberatos G (2001) BioTechnol and Bioengineering 74:181CrossRefGoogle Scholar
  33. 33.
    Colberg PJ (1988) Anaerobic microbial degradation of cellulose, lignin, oligolignols and monoaromatic lignin derivatives. In: Zehnder AJB (ed), Biology of Anaerobic Microorganisms. Wiley, New YorkGoogle Scholar
  34. 34.
    Stack RJ, Cotta MA (1986) Applied and Environmental Microbiology 52:209Google Scholar
  35. 35.
    Pavlostathis SG, Miller TL, Wolin MJ (1988) Applied and Environmental Microbiology 54:2566Google Scholar
  36. 36.
    Pavlostathis SG, Miller TL, Wolin MJ (1988) Applied and Environmental Microbiology 54:2660Google Scholar
  37. 37.
    Heukelekian H (1958) Basic principles of sludge digestion. In: McCabe J, Eckenfelder WW (eds), Biological Treatment of Sewage and Industrial Wastes. Reinhold, New YorkGoogle Scholar
  38. 38.
    Nagase M, Matsuo T (1982) BioTechnol and Bioengineering 24:2227CrossRefGoogle Scholar
  39. 39.
    Greco RL, Coto JM, Dentel SK, Gosset JM (1983) Technical report. Environmental Engineering department, Cornell University, Ithaca, New YorkGoogle Scholar
  40. 40.
    Christ O, Wilderer PA, Angerhofer R, Faulstich M (2000) Water Science and Technol 41:61Google Scholar
  41. 41.
    Toerien DF, Hattingh WHJ (1969) Water Res 3:385CrossRefGoogle Scholar
  42. 42.
    Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) J Bacteriol 114:1231Google Scholar
  43. 43.
    Miller TL, Wolin MJ (1973) J Bacteriol 116:836Google Scholar
  44. 44.
    Thauer RK, Jungermann K, Decker K (1977) Bacteriol Rev 41:100Google Scholar
  45. 45.
    Cohen A, van Gemert JM, Zoetemeyer RJ, Breure AM (1984) Process Biochemistry (December) 228Google Scholar
  46. 46.
    Zoetemeyer RJ, van den Heuvel JC, Cohen A (1982) Water Res 16:303CrossRefGoogle Scholar
  47. 47.
    Kisaalita WS, Lo KV, Pinder KL (1989) Biotechnol and Bioengineering 34:1235CrossRefGoogle Scholar
  48. 48.
    Ghosh S, Klass DL (1978) Process Biochemistry 13:15Google Scholar
  49. 49.
    Pohland FG, Ghosh S (1971) Biotechnol And Bioengineering Symp 2:85Google Scholar
  50. 50.
    Ghosh S, Pohland FG (1974) J WPCF 46:748Google Scholar
  51. 51.
    Noike T, Endo G, Chang J-E, Yaguchi J-I, Matsumoto J (1985) BioTechnol and Bioengineering XXVII:1482CrossRefGoogle Scholar
  52. 52.
    Huang CJ (1983) The effect of dilution rate on the kinetics of anaerobic acidogenesis. Proceedings of the thirteenth Annual Biochemical Engineering Symposium, Reilly PJ (ed)Google Scholar
  53. 53.
    Novak JT, Carlson DA (1970) J WPCF 42:1933Google Scholar
  54. 54.
    Lawrence AW, McCarty PL (1969) J WPCF 41:R1Google Scholar
  55. 55.
    Massey ML, Pohland FG (1978) J WPCF 50:2205Google Scholar
  56. 56.
    Heyes RH, Hall RJ (1983) Applied and Environmental Microbiology 43:710Google Scholar
  57. 57.
    Lin C-Y, Sato K, Noike T, Matsumoto J (1986) Water Res 20:385CrossRefGoogle Scholar
  58. 58.
    Ahring BK, Westermann P (1987) Applied and Environmental Microbiology 53:429Google Scholar
  59. 59.
    Kaspar HF, Wuhrmann K (1978) Applied and Environmental Microbiology 36:1Google Scholar
  60. 60.
    Smith PH, Mah RA (1966) Applied Microbiology 14:368Google Scholar
  61. 61.
    Aguilar A, Casas C, Lema JM (1995) Water Res 29:505CrossRefGoogle Scholar
  62. 62.
    Robinson JA, Tiedje JM (1982) Applied and Environmental Microbiology 44:1374Google Scholar
  63. 63.
    Graef SP, Andrews JF (1973) AI Che symposium series. Water 70:101Google Scholar
  64. 64.
    Hill DT, Barth CL (1977) J WPCF October:2129Google Scholar
  65. 65.
    Kleinstreuer C, Poweigha T (1982) BioTechnol and Bioengineering XXIV:1941CrossRefGoogle Scholar
  66. 66.
    Marsili-Libelli S, Nardini M (1985) Environ Technol Lett 6:602CrossRefGoogle Scholar
  67. 67.
    Moletta R, Verrie D, Albagnac G (1986) Water Res 20:427CrossRefGoogle Scholar
  68. 68.
    Smith PH, Bordeaux FM, Goto M, Shiralipour A, Wilkie A, Andrews JF, Ide S, Barnett MW (1988) Biological production of methane from biomass. In: Smith WH, Frank JR (eds), Methane from Biomass. A Treatment Approach. Elsevier, LondonGoogle Scholar
  69. 69.
    Markl H (1999) Modeling of biogas reactors. In: Rehm HJ, Reed G (eds), Biotechnology. Wiley-VCH, WeinheimGoogle Scholar
  70. 70.
    Hill DT (1982) Transactions of the ASAE 25:1374Google Scholar
  71. 71.
    Hill DT (1983) Agricultural wastes 5:1CrossRefGoogle Scholar
  72. 72.
    Hill DT, Tollner EW, Holmberg RD (1983) Agricultural wastes 5:105CrossRefGoogle Scholar
  73. 73.
    Hill DT (1983) Agricultural wastes 5:153Google Scholar
  74. 74.
    Hill DT (1983) Agricultural wastes 5:205CrossRefGoogle Scholar
  75. 75.
    Hill DT (1983) Agricultural wastes 5:219CrossRefGoogle Scholar
  76. 76.
    Durand JH, Iannotti EL, Fischer JR, Miles JB (1988) Biological wastes 24:1CrossRefGoogle Scholar
  77. 77.
    Kalyuzhnyi SV (1997) Bioresource Technol 59:249CrossRefGoogle Scholar
  78. 78.
    Kalyuzhnyi SV, Davlyatshina MA (1997) Bioresource Technol 59:73CrossRefGoogle Scholar
  79. 79.
    Kalyuzhnyi SV, Davlyatshina MA, Varfolomeev SD (1994) Applied Biochemistry And Microbiology 30:162Google Scholar
  80. 80.
    Kalyuzhnyi SV, Davlyatshina MA, Varfolomeev SD (1994) Applied Biochemistry And Microbiology 30:20Google Scholar
  81. 81.
    Kalyuzhnyi SV, Gachok VP, Davlyatshina MA, Varfolomeyev SD (1993) Applied Biochemistry And BioTechnol 39:601CrossRefGoogle Scholar
  82. 82.
    Kalyuzhnyi SV, Gachok VP, Sklyar VI, Varfolomeev SD (1991) Applied Biochemistry And BioTechnol 28–29:183CrossRefGoogle Scholar
  83. 83.
    Angelidaki I, Ellegaard L, Ahring BK (1993) BioTechnol and Bioengineering 42:159CrossRefGoogle Scholar
  84. 84.
    Bryers JD (1985) BioTechnol and Bioengineering XXVII:638CrossRefGoogle Scholar
  85. 85.
    Gavala HN, Skiadas IV, Bozinis NA, Lyberatos G (1996) Water Science and Technol 34:67CrossRefGoogle Scholar
  86. 86.
    Lyberatos G, Gavala HN, Stamatelatou A (1997) Nonlinear Analysis 30:2341CrossRefGoogle Scholar
  87. 87.
    Jeyaseelan S (1997) Water Science and Technol 35:185CrossRefGoogle Scholar
  88. 88.
    Vavilin VA, Vasiliev VB, Ponomarev AV, Rytov SV (1994) Bioresource Technol 48:1CrossRefGoogle Scholar
  89. 89.
    Siegrist H, Renggli D, Gujer W (1995) Mathematical modelling of anaerobic mesophilic processes in a digester. In: International meeting on anaerobic processes for bioenergy and environment. Colle — Colle, Copenhagen, DenmarkGoogle Scholar
  90. 90.
    Siegrist H, Renggli D, Gujer W (1993) Water Science and Technol 27:25Google Scholar
  91. 91.
    Angelidaki I, Ellegaard L, Ahring BK (1999) BioTechnol and Bioengineering 63:363CrossRefGoogle Scholar
  92. 92.
    Batstone DJ, Keller J, Newell RB, Newland M (2000) Bioresource Technol 75:67CrossRefGoogle Scholar
  93. 93.
    Mosey FE (1983) Water Science and Technol 15:209Google Scholar
  94. 94.
    Bauchop T, Elsden SR (1960) J of General Microbiology 23:457Google Scholar
  95. 95.
    Pullammanapallil P, Owens JM, Svoronos SA, Lyberatos G, Chynoweth DP (1991) AI Che Annual Meeting 43Google Scholar
  96. 96.
    Costello DJ, Greenfield PF, Lee PL (1991) Water Res 25:847CrossRefGoogle Scholar
  97. 97.
    Costello DJ, Greenfield PF, Lee PL (1991) Water Res 25:859CrossRefGoogle Scholar
  98. 98.
    Keller J, Romli M, Lee PL, Greenfield PF (1993) Water Science and Technol 28:197Google Scholar
  99. 99.
    Romli M, Keller J, Lee PL, Greenfield PF (1994) Advances in Bioprocess Engineering 379Google Scholar
  100. 100.
    Romli M, Keller J, Lee PL, Greenfield PF (1994) Water Science and Technol 30:35Google Scholar
  101. 101.
    Romli M, Keller J, Lee PJ, Greenfield PF (1995) Process Safety and Environmental Protection 73:151Google Scholar
  102. 102.
    Ruzicka M (1996) Water Res 30:2440CrossRefGoogle Scholar
  103. 103.
    Ruzicka M (1996) Water Res 30:2447CrossRefGoogle Scholar
  104. 104.
    Batstone DJ, Keller J, Newell RB, Newland M (2000) Bioresource Technol 75:75CrossRefGoogle Scholar
  105. 105.
    Ni J (1999) J of Agricultural Engineering Research 72:1CrossRefGoogle Scholar
  106. 106.
    Kiely G, Tayfur G, Dolan C, Tanji K (1997) Water Res 31:534CrossRefGoogle Scholar
  107. 107.
    Angelidaki I, Ellegaard L, Ahring BK (1997) Water Science and Technol 36:263CrossRefGoogle Scholar
  108. 108.
    Batstone DJ, Keller J, Angelidaki RI, Kalyuzhny SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2001) 9th World Congress on Anaerobic Digestion, Antwer-pen, September 2–6 Proceedings of the Workshop on ADM 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hariklia N. Gavala
    • 1
  • Irini Angelidaki
    • 2
  • Birgitte K. Ahring
    • 1
  1. 1.The Environmental Microbiology and Biotechnology Group (EMB)The Technical University of DenmarkLyngbyDenmark
  2. 2.Environment and Resources DTUThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations