Skip to main content

Applications of the Anaerobic Digestion Process

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 82))

Abstract

At the start of the new millennium waste management has become a political priority in many countries. One of the main problems today is to cope with an increasing amount of primary waste in an environmentally acceptable way. Biowastes, i. e., municipal, agricultural or industrial organic waste, as well as contaminated soils etc., have traditionally been deposited in landfills or even dumped into the sea or lakes without much environmental concern. In recent times, environmental standards of waste incineration and controlled land filling have gradually improved, and new methods of waste sorting and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling and incineration of organic waste has become less desirable, and legislation, both in Europe and elsewhere, tends to favor biological treatment as a way of recycling minerals and nutrients of organic wastes from society back to the food production and supply chain. Removing the relatively wet organic waste from the general waste streams also results in a better calorific value of the remainder for incineration, and a more stable fraction for land filling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McInerney MJ, Bryant MP, Stafford DA (1980) Metabolic stages and energetics of microbial anaerobic digestion. In: Stafford DA, Wheatley BI, Hudges DE (ed) Anaerobic digestion. Applied Science, London

    Google Scholar 

  2. Gujer W, Zehnder AJB (1983) Water Sci Technol 15:127

    CAS  Google Scholar 

  3. Allison MJ (1978) Appl Environ Microbiol 35:872

    CAS  Google Scholar 

  4. Switzenbaum MS, Giraldo-Gomez E,H ickey RF (1990) Enzyme Microb Technol 12:722

    Article  CAS  Google Scholar 

  5. Ahring BK, Sandberg M, Angelidaki I (1995) Appl Microbiol Biotechnol

    Google Scholar 

  6. Dugba PN, Zhang H (1999) Bioresour Technol 68:225

    Article  CAS  Google Scholar 

  7. Whitmore TN, Lazzari M, Lloyd D (1985) Biotechnol Lett 7:283

    Article  CAS  Google Scholar 

  8. van Lier JB, Rebac S, Lettinga G (1996) In: Proceedings of the IASWQ-NVA Int. conf. on advanced wastewater treatment

    Google Scholar 

  9. Varel VH, Hashimoto AG, Chen YR (1980) Appl Environ Microbiol 40:217

    CAS  Google Scholar 

  10. Hashimoto AG (1982) Agriculural Wastes 4:345

    Article  CAS  Google Scholar 

  11. Ahring BK (1995) Ant van Leeuw 67:91

    Article  CAS  Google Scholar 

  12. Chen YR, Day DL (1986) Agriculural Wastes 16:313

    Article  CAS  Google Scholar 

  13. Fang HHT, Wai-Chung Chung D (1999) Water Sci Technol 40:77

    Article  CAS  Google Scholar 

  14. Archer DB (1983) Enzyme Microb Technol 5:162

    Article  CAS  Google Scholar 

  15. Buhr HO, Andrews JF (1977) Wat Res 11:129

    Article  CAS  Google Scholar 

  16. Varel VH, Isaacson HR, Bryant MP (1977) Appl Environ Microbiol 33:298

    CAS  Google Scholar 

  17. Hashimoto AG (1982) Biotechnol Bioeng 14:2039

    Article  Google Scholar 

  18. Mackie RI, Bryant MP (1981) Appl Environ Microbiol 41:1363

    CAS  Google Scholar 

  19. Madamwar D, Patel A, Patel V (1990) J Ferment Bioeng 70:340

    Article  CAS  Google Scholar 

  20. Casali GB, Senior E (1989) J Chem Tech Biotechnol 44:31

    Article  Google Scholar 

  21. Hashimoto AG, Varel VH, Chen YR (1981) Agriculural Wastes 3:241

    Article  CAS  Google Scholar 

  22. Hashimoto AG (1983) Biotechnol Bioeng 25:185

    Article  CAS  Google Scholar 

  23. Nyns EJ, Schönborn W (1986) Biomethanation processes, Berlin: Wiley-VCH Weinheim, (8): Microbial degradations, p 207

    Google Scholar 

  24. Kato MT, Field JA, Kleerebezem R, Lettinga G (1994) J Ferment Bioeng 77:679

    Article  CAS  Google Scholar 

  25. Rebac S, Ruskova J, Gerbens S, van Lier JB, Stams AJM, Lettinga G (1995) J Ferment Bioeng 80:499

    Article  CAS  Google Scholar 

  26. Björnsson L (2000) Intensification of the biogas process by improved process monitoring and biomass retention, Dissertation, Lund University, Lund, Sweden

    Google Scholar 

  27. Zinder SH (1993) Physiology and ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Ecology, physiology, biochemistry and genetics. Chapman and Hall, New York

    Google Scholar 

  28. Moosbrugger RE, Wentzel MC, Ekama GA, Marais GR (1993) Water SA 19:11

    CAS  Google Scholar 

  29. Mosey FE, Fernandes XA (1989) Water Science and Technology 21:187

    CAS  Google Scholar 

  30. Wilcox SJ, Hawkes DL, Guwy AJ (1995) Wat Res 29:1470

    Article  Google Scholar 

  31. Angelidaki I, Ahring BK (1994) Water Res 28:727

    Article  CAS  Google Scholar 

  32. Rozzi A (1991) Med Fac Landbouww Rijksuniv Gent 56:1499

    CAS  Google Scholar 

  33. Pretorius WA (1994) Water Science and Technology 30:1

    CAS  Google Scholar 

  34. Speece RE (1983) Environ Sci Technol 17:416

    Article  Google Scholar 

  35. Angelidaki I, Ahring BK (1993) Appl Microbiol Biotechnol 38:560

    Article  CAS  Google Scholar 

  36. Bhattacharya SK, Parkin GF (1989) J WPCF 61:55

    CAS  Google Scholar 

  37. Sprott GD, Shaw KM, Jarrell KF (1984) J Biol Chem 259:12602

    CAS  Google Scholar 

  38. Sprott GD, Patel GB (1986) System Appl Microbiol 7:358

    CAS  Google Scholar 

  39. Hansen KH, Angelidaki I, Ahring BK (1998) Wat Res 32:5

    Article  CAS  Google Scholar 

  40. Koster IW (1986) J Chem Tech Biotechnol 36:445

    CAS  Google Scholar 

  41. Hansen KH, Angelidaki I, Ahring BK (1999) Wat Res 33:1805

    Article  CAS  Google Scholar 

  42. Kayhanian M, Tchobanoglous G (1992) Biocycle 33:58

    CAS  Google Scholar 

  43. Hamzawi N, Kennedy KJ, McLean DD (1998) Environ Technol 19:993

    Article  CAS  Google Scholar 

  44. Angelidaki I, Ahring BK (1998) Biodegradation 8:221

    Article  Google Scholar 

  45. Imai T, Ukita M, Sekine M, Nakanishi H, Fukagawa M (1998) Water Science and Technology 38:377

    Article  CAS  Google Scholar 

  46. Angelidaki I, Ahring BK (1992) Appl Microbiol Biotechnol 37:808

    Article  CAS  Google Scholar 

  47. Rinzema A, Boone M, van Knippenberg K, Lettinga G (1994) Wat Environ Res 66:40

    CAS  Google Scholar 

  48. Hickey RF,V anderwielen J, Switzenbaum MS (1987) Wat Res 21:1417

    Article  CAS  Google Scholar 

  49. Mol N, Kut OM, Dunn IJ (1993) Water Science and Technology 28:55

    CAS  Google Scholar 

  50. Hickey RF,V anderwielen J, Switzenbaum MS (1989) Wat Res 23:207

    Article  CAS  Google Scholar 

  51. Hendriksen HV, Larsen S, Ahring BK (1992) Appl Environ Microbiol 58:365

    CAS  Google Scholar 

  52. Wu WM, Bhatnagar L, Zeikus JG (1993) Appl Environ Microbiol 59:389

    CAS  Google Scholar 

  53. Donlon BA, Razo-Flores E, Lettinga G, Field JA (1996) Biotechnol Bioeng 51:439

    Article  CAS  Google Scholar 

  54. Bradley PM (2000) Hydrobiol J 8:104

    Google Scholar 

  55. Christansen N, Christensen SR, Arvin E, Ahring BK (1997) Appl Microbiol Biotechnol 47:91

    Article  Google Scholar 

  56. Zhuang P, Pavlostathis SG (1994) Water Sci Technol 30:85

    CAS  Google Scholar 

  57. Hörber CH, Christansen N, Arvin E, Ahring BK (1998) Appl Environ Microbiol 64:1860

    Google Scholar 

  58. Donlon BA, Razo-Flores E, Luijten M, Swarts H, Lettinga G, Field JA (1997) Appl Microbiol Biotechnol 47:83

    Article  CAS  Google Scholar 

  59. Bendixen HJ (1996) Copenhagen 1: 296

    CAS  Google Scholar 

  60. Ahring BK, Angelidaki I, Johansen K (1992) Water Sci Technol 25:311

    CAS  Google Scholar 

  61. Hedegaard M, Jaensch V (1999) Renewable Energy 16:1064

    Article  Google Scholar 

  62. IEA Bioenergy (1994) Minister of Energy/Danish Energy Agency, Copenhagen, Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angelidaki, I., Ellegaard, L., Ahring, B.K. (2003). Applications of the Anaerobic Digestion Process. In: Ahring, B.K., et al. Biomethanation II. Advances in Biochemical Engineering/Biotechnology, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45838-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45838-7_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44321-6

  • Online ISBN: 978-3-540-45838-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics