Skip to main content

Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems

  • Chapter
  • First Online:
Dynamics and Thermodynamics of Systems with Long-Range Interactions

Part of the book series: Lecture Notes in Physics ((LNP,volume 602))

Abstract

The formation of large-scale vortices is an intriguing phenomenon in two-dimensional turbulence. Such organization is observed in large-scale oceanic or atmospheric flows, and can be reproduced in laboratory experiments and numerical simulations. A general explanation of this organization was first proposed by Onsager (1949) by considering the statistical mechanics for a set of point vortices in two-dimensional hydrodynamics. Similarly, the structure and the organization of stellar systems (globular clusters, elliptical galaxies,...) in astrophysics can be understood by developing a statistical mechanics for a system of particles in gravitational interaction as initiated by Chandrasekhar (1942). These statistical mechanics turn out to be relatively similar and present the same difficulties due to the unshielded long-range nature of the interaction. This analogy concerns not only the equilibrium states, i.e. the formation of large-scale structures, but also the relaxation towards equilibrium and the statistics of fluctuations. We will discuss these analogies in detail and also point out the specificities of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Agekyan, Sov. Astron. 5, 809 (1962)

    ADS  Google Scholar 

  2. V. A. Antonov, Vest. Leningr. Gos. Univ. 7, 135 (1962)

    Google Scholar 

  3. E. B. Aronson, C.J. Hansen, Astrophys. J. 177, 145 (1972)

    Article  ADS  Google Scholar 

  4. R. Balescu, Statistical Mechanics of Charged Particles (Interscience, New York, 1963)

    MATH  Google Scholar 

  5. P. Barge, J. Sommeria, Astron. Astrophys. 295, L1 (1995)

    ADS  Google Scholar 

  6. J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001)

    Article  ADS  Google Scholar 

  7. P. Bertrand, Contribution à l’étude de modèles mathématiques de plasmas non collisionnels, PhD thesis, Université de Nancy I (1972)

    Google Scholar 

  8. N. Bilic, R.D. Viollier, Phys. Lett. B 408, 75 (1997)

    Article  ADS  Google Scholar 

  9. J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)

    Google Scholar 

  10. B. M. Boghosian, Phys. Rev. E 53, 4754 (1996)

    Article  ADS  Google Scholar 

  11. J. P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Bouchet, Mécanique statistique pour des écoulements géophysiques, PhD thesis, Université J. Fourier (2001)

    Google Scholar 

  13. F. Bouchet, P.H. Chavanis, J. Sommeria, “Statistical mechanics of Jupiter’s Great Red Spot in the shallow water model”, preprint.

    Google Scholar 

  14. F. Bouchet, J. Sommeria, J. Fluid. Mech. 464, 165 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. A. Bracco, P.H. Chavanis, A. Provenzale, E. Spiegel, Phys. Fluids 11, 2280 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. H. Brands, P.H. Chavanis, R. Pasmanter, J. Sommeria, Phys. Fluids 11, 3465 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math. Phys. 143, 501 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. G. F. Carnevale, J.C. McWilliams, Y. Pomeau, J.B. Weiss, W.R. Young, Phys. Rev. Lett. 66, 2735 (1991)

    Article  ADS  Google Scholar 

  19. S. Chandrasekhar, An Introduction to the Theory of Stellar Structure (Dover 1939)

    Google Scholar 

  20. S. Chandrasekhar, Astrophys. J. 94, 511 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Chandrasekhar, Principles of stellar dynamics (Dover 1942)

    Google Scholar 

  22. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. S. Chandrasekhar, Astrophys. J. 97, 255 (1943)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Chandrasekhar, Astrophys. J. 99, 25 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Chandrasekhar, Astrophys. J. 99, 47 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Chandrasekhar, Rev. Mod. Phys. 21, 383 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. S. Chandrasekhar & J. von Neumann: Astrophys. J. 95, 489 (1942)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. S. Chandrasekhar & J. von Neumann: Astrophys. J. 97, 1 (1943)

    Article  ADS  MathSciNet  Google Scholar 

  29. P. H. Chavanis, Contribution à la mécanique statistique des tourbillons bidimensionnels. Analogie avec la relaxation violente des systèmes stellaires, Thèse de doctorat, Ecole Normale Supérieure de Lyon (1996)

    Google Scholar 

  30. P. H. Chavanis: Phys. Rev. E 58, R1199 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. P. H. Chavanis: Mon. Not. R. astr. Soc. 300, 981 (1998)

    Article  ADS  Google Scholar 

  32. P. H. Chavanis: Annals of the New York Academy of Sciences 867, 120 (1998)

    Article  ADS  Google Scholar 

  33. P. H. Chavanis: Astron. Astrophys. 356, 1089 (2000)

    ADS  Google Scholar 

  34. P. H. Chavanis: Phys. Rev. Lett. 84, 5512 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. H. Chavanis, “On the analogy between two-dimensional vortices and stellar systems”, Proceedings of the IUTAM Symposium on Geometry and Statistics of Turbulence (2001), T. Kambe, T. Nakano, T. Miyauchi Eds. (Kluwer Academic Publishers)

    Google Scholar 

  36. P. H. Chavanis: Phys. Rev. E 64, 026309 (2001)

    Article  ADS  Google Scholar 

  37. P. H. Chavanis: Astron. Astrophys. 381, 340 (2002)

    Article  MATH  ADS  Google Scholar 

  38. P. H. Chavanis: Astron. Astrophys. 381, 709 (2002)

    Article  ADS  Google Scholar 

  39. P. H. Chavanis: Astron. Astrophys. 386, 732 (2002)

    Article  ADS  Google Scholar 

  40. P. H. Chavanis: Phys. Rev. E 65, 056302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. P. H. Chavanis: Phys. Rev. E 65, 056123 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  42. P. H. Chavanis, “Statistical mechanics of violent relaxation in stellar systems”, Proceedings of the Conference on Multiscale Problems in Science and Technology (Springer 2002); also available on astro-ph.

    Google Scholar 

  43. P. H. Chavanis, “The self-gravitating Fermi gas”, Proceedings of the Conference Dark2002: 4th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, 4–9 Feb 2002, Cape Town, South African Astroparticles (Springer); also available on astro-ph/0205426.

    Google Scholar 

  44. P. H. Chavanis, “Gravitational instability of isothermal and polytropic spheres”, submitted to Astron. Astrophys. [astro-ph/0207080].

    Google Scholar 

  45. P. H. Chavanis, I. Ispolatov: Phys. Rev. E 66, 036109 (2002)

    Article  ADS  Google Scholar 

  46. P. H. Chavanis, C. Rosier, C. Sire “Thermodynamics of self-gravitating systems”, Phys. Rev. E 66, 036105 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. P. H. Chavanis, C. Sire: Phys. Rev. E 62, 490 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. P. H. Chavanis, C. Sire: Phys. Fluids 13, 1904 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  49. P. H. Chavanis, J. Sommeria: J. Fluid Mech. 314, 267 (1996)

    Article  MATH  ADS  Google Scholar 

  50. P. H. Chavanis, J. Sommeria: Phys. Rev. Lett. 78, 3302 (1997)

    Article  ADS  Google Scholar 

  51. P. H. Chavanis, J. Sommeria: J. Fluid Mech. 356, 259 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. P. H. Chavanis, J. Sommeria: Mon. Not. R. astr. Soc. 296, 569 (1998)

    Article  ADS  Google Scholar 

  53. P. H. Chavanis, J. Sommeria: Phys. Rev. E 65, 026302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. P. H. Chavanis, J. Sommeria, R. Robert: Astrophys. J. 471, 385 (1996)

    Article  ADS  Google Scholar 

  55. K. V. Chukbar: Plasma Physics Reports. 25, 77 (1999)

    ADS  Google Scholar 

  56. H. Cohn: Astrophys. J. 242, 765 (1980)

    Article  ADS  Google Scholar 

  57. H. J. de Vega, N. Sanchez: Nucl. Phys. B 625, 409 (2002)

    Article  MATH  ADS  Google Scholar 

  58. G. L. Eyink, H. Spohn: J. Stat. Phys. 70, 833 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. E. Follana, V. Laliena: Phys. Rev. E 61, 6270 (2000)

    Article  ADS  Google Scholar 

  60. P. Godon, M. Livio: Astrophys. J. 537, 396 (2000)

    Article  ADS  Google Scholar 

  61. A. E. Hansen, D. Marteau, P. Tabeling: Phys. Rev. E 58, 7261 (1998)

    Article  ADS  Google Scholar 

  62. P. Hertel, W. Thirring, “Thermodynamic instability of a system of gravitating fermions” in Quanten und Felder, edited by H.P. Dürr (Vieweg, Braunschweig, 1971)

    Google Scholar 

  63. J. Hjorth, J. Madsen: Mon. Not. R. astr. Soc. 265, 237 (1993)

    ADS  Google Scholar 

  64. J. Holtsmark, Ann. Phys. (Leipzig) 58, 577 (1919)

    Article  Google Scholar 

  65. G. Horwitz, J. Katz: Astrophys. J. 222, 941 (1978)

    Article  ADS  Google Scholar 

  66. X. P. Huang, C.F. Driscoll: Phys. Rev. Lett. 72, 2187 (1994)

    Article  ADS  Google Scholar 

  67. I. A. Ibragimov, Yu. V. Linnik, Independant and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971)

    Google Scholar 

  68. S. Inagaki, D. Lynden-Bell: Mon. Not. R. astr. Soc. 205, 913 (1983)

    MATH  ADS  Google Scholar 

  69. J. Jimenez: J. Fluid Mech. 313, 223 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. G. Joyce, D. Montgomery: J. Plasma Phys. 10, 107 (1973)

    Article  ADS  Google Scholar 

  71. B. B. Kadomtsev, O.P. Pogutse: Phys. Rev. Lett. 25, 1155 (1970)

    Article  ADS  Google Scholar 

  72. H. E. Kandrup: Physics Reports 63, 1 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  73. H. E. Kandrup: Astrophys. J. 244, 316 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  74. H. E. Kandrup: Astrophys. & Space Sci. 97, 435 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. J. Katz: Mon. Not. R. astr. Soc. 183, 765 (1978)

    MATH  ADS  Google Scholar 

  76. J. Katz, D. Lynden-Bell: Mon. Not. R. astr. Soc. 184, 709 (1978)

    ADS  Google Scholar 

  77. J. Katz, I. Okamoto: Mon. Not. R. astr. Soc. 317, 163 (2000)

    Article  ADS  Google Scholar 

  78. E. Kazantzev, J. Sommeria, J. Verron: J. Phys. Ocean. 28, 1017 (1998)

    Article  ADS  Google Scholar 

  79. G. Kirchhoff, in Lectures in Mathematical Physics, Mechanics (Teubner, Leipzig, 1877)

    Google Scholar 

  80. R.H. Kraichnan: J. Fluid Mech. 67, 155 (1975)

    Article  MATH  ADS  Google Scholar 

  81. H.A. Kramers, Physica 7, 284 (1940)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  82. B.N. Kuvshinov, T.J. Schep: Phys. Rev. Lett. 84, 650 (2000)

    Article  ADS  Google Scholar 

  83. G.A. Kuzmin, “Statistical mechanics of the organization into two-dimensional coherent structures”, in Structural Turbulence, edited by M.A. Goldshtik (Acad. Naouk CCCP Novosibirsk, Institute of ThermoPhysics, 1982), pp. 103–114.

    Google Scholar 

  84. C. Lancellotti, M. Kiessling: Astrophys. J. 549, L93 (2001)

    Article  ADS  Google Scholar 

  85. R.B. Larson: Mon. Not. R. astr. Soc. 147, 323 (1970)

    ADS  Google Scholar 

  86. J.P. Laval, P.H. Chavanis, B. Dubrulle, C. Sire: Phys. Rev E 63, 065301(R) (2001)

    Article  ADS  Google Scholar 

  87. J.P. Laval, B. Dubrulle, S. Nazarenko: Phys. Rev. Lett. 83, 4061 (1999)

    Article  ADS  Google Scholar 

  88. E.P. Lee: Astrophys. J. 151, 687 (1968)

    Article  ADS  Google Scholar 

  89. T.S. Lundgren, Y.B. Pointin: J. Stat. Phys. 17, 323 (1977)

    Article  ADS  Google Scholar 

  90. D. Lynden-Bell: Mon. Not. R. astr. Soc. 136, 101 (1967)

    ADS  Google Scholar 

  91. D. Lynden-Bell, P.P. Eggleton: Mon. Not. R. astr. Soc. 191, 483 (1980)

    ADS  MathSciNet  Google Scholar 

  92. D. Lynden-Bell, R. Wood: Mon. Not. R. astr. Soc. 138, 495 (1968)

    ADS  Google Scholar 

  93. J.C. McWilliams: J. Fluid Mech. 146, 21 (1984)

    Article  MATH  ADS  Google Scholar 

  94. J. Michel, R. Robert: J. Phys. Stat. 77, 645 (1994)

    Article  MATH  Google Scholar 

  95. J. Miller: Phys. Rev. Lett. 65, 2137 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  96. J. Miller, P.B. Weichman, M.C. Cross: Phys. Rev. A 45, 2328 (1992)

    Article  ADS  Google Scholar 

  97. I.A. Min, I. Mezic, A. Leonard: Phys. Fluids 8, 1169 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  98. P.K. Newton, The N-Vortex Problem: Analytical Techniques, Springer-Verlag, Applied Mathematical Sciences Vol. 145, May 2001.

    Google Scholar 

  99. M.V. Nezlin, E.N. Snezhkin, Rossby vortices, spiral structures, solitons (Springer-Verlag 1993)

    Google Scholar 

  100. E.A. Novikov: Sov. Phys. JETP 41, 937 (1975)

    ADS  Google Scholar 

  101. L. Onsager: Nuovo Cimento Suppl. 6, 279 (1949)

    Article  MathSciNet  Google Scholar 

  102. T. Padmanabhan: Astrophys. J. Supp. 71, 651 (1989)

    Article  ADS  Google Scholar 

  103. T. Padmanabhan: Phys. Rep. 188, 285 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  104. J. Pedlosky, Geophysical fluid dynamics (Springer-Verlag, 1996)

    Google Scholar 

  105. M.V. Penston: Mon. Not. R. astr. Soc. 144, 425 (1969)

    ADS  Google Scholar 

  106. A. Plastino, A.R. Plastino: Phys. Lett. A 226, 257 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  107. Y.B. Pointin, T.S. Lundgren: Phys. Fluids. 19, 1459 (1976)

    Article  MATH  ADS  Google Scholar 

  108. H. Risken, The Fokker-Planck equation (Springer, 1989)

    Google Scholar 

  109. R. Robert: J. Stat. Phys. 65, 531 (1991)

    Article  MATH  ADS  Google Scholar 

  110. R. Robert, C. Rosier: J. Stat. Phys. 86, 481 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  111. R. Robert, J. Sommeria: J. Fluid Mech. 229, 291 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  112. R. Robert, J. Sommeria: Phys. Rev. Lett. 69, 2776 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  113. A. Salzberg, S. Prager, J. Chem. Phys. 38, 2587 (1963)

    Article  ADS  Google Scholar 

  114. G. Severne, M. Luwel: Astrophys. & Space Sci. 72, 293 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  115. C. Sire, P.H. Chavanis: Phys. Rev. E 61, 6644 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  116. C. Sire, P.H. Chavanis: Phys. Rev. E, in press [cond-mat/0204303].

    Google Scholar 

  117. A.R. Smith, T.M. O’Neil: Phys. Fluids B 2, 2961 (1990)

    Article  ADS  Google Scholar 

  118. J. Sommeria, C. Nore, T. Dumont, R. Robert: C.R. Acad. Sci. II 312, 999 (1991)

    ADS  Google Scholar 

  119. J. Sommeria, C. Staquet, R. Robert: J. Fluid Mech. 233, 661 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  120. B. Stahl, M.K.H. Kiessling, K. Schindler: Planet. Space Sci. 43, 271 (1994)

    Article  ADS  Google Scholar 

  121. P. Tanga, A. Babiano, B. Dubrulle, A. Provenzale: Icarus 121, 158 (1996)

    Article  ADS  Google Scholar 

  122. S. Tremaine, M. Hénon, D. Lynden-Bell: Mon. Not. R. astr. Soc. 219 285 (1986)

    MATH  ADS  Google Scholar 

  123. C. Tsallis: J. Stat. Phys. 52 479 (1988)

    Google Scholar 

  124. B. Turkington, N. Whitaker: SIAM J. Sci. Comput. 17, 1414 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  125. J.B. Weiss, J.C. McWilliams: Phys. Fluids A 5, 608 (1993)

    Article  MATH  ADS  Google Scholar 

  126. J.B. Weiss, A. Provenzale and J.C. McWilliams: Phys. Fluids 10, 1929 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  127. C.R. Willis, R.H. Picard: Phys. Rev. A 9, 1343 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  128. V.P. Youngkins, B.N. Miller: Phys. Rev. E 62, 4582 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chavanis, PH. (2002). Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems. In: Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds) Dynamics and Thermodynamics of Systems with Long-Range Interactions. Lecture Notes in Physics, vol 602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45835-2_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45835-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44315-5

  • Online ISBN: 978-3-540-45835-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics