Skip to main content

The Complexity of Real Recursive Functions

  • Conference paper
  • First Online:
Book cover Unconventional Models of Computation (UMC 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2509))

Included in the following conference series:

Abstract

We explore recursion theory on the reals, the analog counterpart of recursive function theory. In recursion theory on the reals, the discrete operations of standard recursion theory are replaced by operations on continuous functions, such as composition and various forms of differential equations. We define classes of real recursive functions, in a manner similar to the classical approach in recursion theory, and we study their complexity. In particular, we prove both upper and lower bounds for several classes of real recursive functions, which lie inside the primitive recursive functions and, therefore, can be characterized in terms of standard computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold. Equations Différentielles Ordinaires. Editions Mir, 5 ème edition, 1996.

    Google Scholar 

  2. A. Babakhanian. Exponentials in differentially algebraic extension fields. Duke Math. J., 40:455–458, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.S. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoretical Computer Science, 138(1):67–100, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completness, recursive functions and universal machines. Bull. Amer. Math. Soc., 21:1–46, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.L. Campagnolo. Computational complexity of real recursive functions and analog circuits. PhD thesis, Instituto Superior Técnico, 2001.

    Google Scholar 

  6. P. Clote. Computational models and function algebras. In E.R. Griffor, editor, Handbook of Computability Theory, pages 589–681. Elsevier, 1999.

    Google Scholar 

  7. M.L. Campagnolo, C. Moore, and J.F. Costa. An analog characterization of the Grzegorczyk hierarchy. To appear in the Journal of Complexity.

    Google Scholar 

  8. N. J. Cutland. Computability: An Introduction to Recursive Function Theory. Cambridge University Press, 1980.

    Google Scholar 

  9. D. Graça. The general purpose analog computer and recursive functions over the reals. Master’s thesis, Instituto Superior Técnico, 2002.

    Google Scholar 

  10. A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202, 1955.

    MATH  MathSciNet  Google Scholar 

  11. P. Hartman. Ordinary Differential Equations. Birkhauser, 2nd edition, 1982.

    Google Scholar 

  12. P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York, 1962.

    MATH  Google Scholar 

  13. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addisson-Wesley, 1979.

    Google Scholar 

  14. P. Koiran and C. Moore. Closed-form analytic maps in one or two dimensions can simulate Turing machines. Theoretical Computer Science, 210:217–223, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  15. K.-I. Ko. Complexity Theory of Real Functions. Birkhauser, 1991.

    Google Scholar 

  16. C. Moore. Recursion theory on the reals and continuous-time computation. Theoretical Computer Science, 162:23–44, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Moore. Finite-dimensional analog computers: flows, maps, and recurrent neural networks. In C.S. Calude, J. Casti, and M.J. Dinneen, editors, Unconventional Models of Computation, DMTCS. Springer-Verlag, 1998.

    Google Scholar 

  18. P. Odifreddi. Classical Recursion Theory. Elsevier, 1989.

    Google Scholar 

  19. P. Odifreddi. Classical Recursion Theory II. Elsevier, 2000.

    Google Scholar 

  20. R.W. Ritchie. Classes of predictably computable functions. Transactions Amer. Math. Soc., 106:139–173, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  21. H.E. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press, 1984.

    Google Scholar 

  22. J. Traub and A.G. Werschulz. Complexity and Information. Cambridge University Press, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campagnolo, M.L. (2002). The Complexity of Real Recursive Functions. In: Unconventional Models of Computation. UMC 2002. Lecture Notes in Computer Science, vol 2509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45833-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45833-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44311-7

  • Online ISBN: 978-3-540-45833-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics