Skip to main content

An Efficient Mapping Scheme for Embedding Any One-Dimensional Firing Squad Synchronization Algorithm onto Two-Dimensional Arrays

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2493))

Included in the following conference series:

Abstract

An efficient mapping scheme is proposed for embedding any one-dimensional firing squad synchronization algorithm onto 2-D arrays, and some new 2-D synchronization algorithms based on the mapping scheme are presented. The proposed mapping scheme can be readily applied to the design of synchronization algorithms with fault tolerance, algorithms operating on multi-dimensional cellular arrays, and for the generalized case where the general is located at an arbitrary position on the array. A six-state algorithm is developed that can synchronize any m × n rectangular array in 2(m + n) - 4 steps. In addition, we develop a nine-state optimum-time synchronization algorithm on square arrays. We progressively reduce the number of internal states of each cellular automaton on square and rectangular arrays, achieving nine states for a square array and six states for a rectangular array. These are the smallest number of states reported to date for synchronizing rectangular and square arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Balzer: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control, vol. 10(1967), pp. 22–42.

    Article  Google Scholar 

  2. W.T. Beyer: Recognition of topological invariants by iterative arrays. Ph.D. Thesis, MIT, (1969), pp. 144.

    Google Scholar 

  3. E. Goto: A minimal time solution of the firing squad problem. Dittoed course notes for Applied Mathematics 298, Harvard University, (1962), pp. 52–59, with an illustration in color.

    Google Scholar 

  4. A. Grasselli: Synchronization of cellular arrays: The firing squad problem in two dimensions. Information and Control, vol. 28(1975), pp. 113–124.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. J. Grefenstette: Network structure and the firing squad synchronization problem. J. of Computer and System Sciences, vol. 26(1983), pp. 139–152.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Kobayashi: The firing squad synchronization problem for two-dimensional arrays. Information and Control, vol. 34(1977), pp. 177–197.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Kutrib and R. Vollmar: The firing squad synchronization problem in defective cellular automata. Trans. of IEICE on Inf. and Syst., vol. E78-D, No. 7(1995), pp. 895–900.

    Google Scholar 

  8. M. Maeda and H. Umeo: A design of two-dimensional firing squad synchronization algorithms and their implementations. Proc. of 15th Annual Conference of Japanese Society for Artificial Intelligence, 2C3-05(2001), pp. 1–4.

    Google Scholar 

  9. J. Mazoyer: An overview of the firing squad synchronization problem. Lecture Notes on Computer Science, Springer-Verlag, vol. 316(1986), pp. 82–93.

    Google Scholar 

  10. J. Mazoyer: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science, vol. 50(1987), pp. 183–238.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Mazoyer: On optimal solutions to the firing squad synchronization problem. Theoretical Computer Science, vol. 168(1996), pp. 367–404.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Minsky: Computation: Finite and infinite machines. Prentice Hall, (1967), pp. 28–29.

    Google Scholar 

  13. E. F. Moore: The firing squad synchronization problem. in Sequential Machines, Selected Papers (E. F. Moore ed.), Addison-Wesley, Reading MA., (1964), pp. 213–214.

    Google Scholar 

  14. F. R. Moore and G. G. Langdon: A generalized firing squad problem. Information and Control, vol. 12(1968), pp. 212–220.

    Article  MATH  Google Scholar 

  15. H. B. Nguyen and V. C. Hamacher: Pattern synchronization in two-dimensional cellular space. Information and Control, vol. 26(1974), pp, 12–23.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Shinahr: Two-and three-dimensional firing squad synchronization problems. Information and Control, vol. 24(1974), pp. 163–180.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Szwerinski: Time-optimum solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science, vol. 19(1982), pp. 305–320.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Umeo: A fault-tolerant scheme for optimum-time firing squad synchronization. Parallel Computing: Trends and Applications, Elsevier Science B.V. 1994, pp. 223–230.

    Google Scholar 

  19. H. Umeo, T. Sogabe and Y. Nomura: Correction, optimization and verification of transition rule set for Waksman’s firing squad synchronization algorithms. Proc. of the 4th International Conference on Cellular Automata for Research and Industry, 2000, pp. 152–160.

    Google Scholar 

  20. H. Umeo, M. Maeda and N. Fujiwara: Some implementations on two-dimensional firing squad synchronization algorithms. Proc. of 2001 Summer Language and Automata Symposium, held on 23–25, July 2001, 2001, pp. 26:1–2.

    Google Scholar 

  21. V. I. Varshavsky: Synchronization of a collection of automata with random pairwise interaction. Autom. and Remote Control, vol. 29(1969), pp. 224–228.

    Google Scholar 

  22. V. I. Varshavsky, V. B. Marakhovsky and V. A. Peschansky: Synchronization of interacting automata. Mathematical Systems Theory, Vol. 4, No. 3(1970), pp. 212–230.

    Article  MathSciNet  Google Scholar 

  23. R. Vollmar: Algorithmen in Zellularautomaten. Teubner, pp. 192, 1979.

    Google Scholar 

  24. A. Waksman: An optimum solution to the firing squad synchronization problem. Information and Control, vol. 9(1966), pp. 66–78.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. B. Yunes: Seven state solutions to the firing squad synchronization problem. Theoretical Computer Science, vol. 127(1994), pp. 313–332.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Umeo, 1., Maeda, M., Fujiwara, N. (2002). An Efficient Mapping Scheme for Embedding Any One-Dimensional Firing Squad Synchronization Algorithm onto Two-Dimensional Arrays. In: Bandini, S., Chopard, B., Tomassini, M. (eds) Cellular Automata. ACRI 2002. Lecture Notes in Computer Science, vol 2493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45830-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45830-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44304-9

  • Online ISBN: 978-3-540-45830-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics