Advertisement

Sliding mode observers for robust fault reconstruction in nonlinear systems

  • Chee Pin Tan
  • Christopher Edwards
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 281)

Abstract

This paper describes a method for designing sliding mode observers for detection and reconstruction of faults, that is robust against system uncertainty. The method seeks to design an observer which minimises the effect of the uncertainty on the reconstruction of the faults, in an L 2 sense. A nonlinear model of a gantry crane will be used to demonstrate the method and its effectiveness.

Keywords

Fault Detection Sensor Fault Actuator Fault Slide Mode Observer Gantry Crane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, J., Zhang, H. (1991) Robust detection of faulty actuators via unknown input observers. Int. J. Systems Science, 22, 1829–1839zbMATHCrossRefGoogle Scholar
  2. 2.
    Chilali, M., Gahinet, P. (1996) H design with pole placement constraints: an LMI approach. IEEE Trans. Aut. Control, 41, 358–367zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Edwards, C., Spurgeon, S. K. (1994) On the development of discontinuous observers. Int. J. Control, 59, 1211–1229zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Edwards, C., Spurgeon, S. K., Patton, R. J. (2000) Sliding mode observers for fault detection and isolation. Automatica, 36, 541–553zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Franklin, G. F., Powell, J. D., Enami-Naeni, A. (1994) Feedback control of dynamic systems. Addison-WesleyGoogle Scholar
  6. 6.
    Gahinet, P., Nemirovski, A., Laub, A. J., Chilali, M. (1995) LMI Control Toolbox, Users Guide. The MathWorks, Inc.Google Scholar
  7. 7.
    Hermans, F. J. J., Zarrop, M. B. (1996) Sliding mode observers for robust sensor monitoring. Proc. of 13th IFAC World Congress, 211–216Google Scholar
  8. 8.
    Hou, M., Patton, R. J. (1996) An LMI approach to H /H fault detection observers. Proc. of the UKACC Int. Conf. on Control, 305–310Google Scholar
  9. 9.
    Koshkouei, A. J., Zinober, A. S. I. (2000) Sliding mode controller-observer design for multivariable linear systems with unmatched uncertainty. Kybernetika, 36, 95–115MathSciNetGoogle Scholar
  10. 10.
    Patton, R. J., Chen, J. (1992) Robust fault detection of jet engine sensor systems using eigenstructure assignment. J. Guidance, Control and Dynamics, 15, 1491–1497CrossRefGoogle Scholar
  11. 11.
    Tan, C. P., Edwards, C. (2000) An LMI approach for designing sliding mode observers. Proc. of IEEE Conf. on Decision and Control, 2587–2592Google Scholar
  12. 12.
    Tan, C. P., Edwards, C. (2001) Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Technical Report, Department of Engineering 00-8, Leicester UniversityGoogle Scholar
  13. 13.
    Utkin, V. I. (1992) Sliding Modes in Control Optimization. Springer-VerlagGoogle Scholar
  14. 14.
    Yang, H., Saif, M. (1995) Fault detection in a class of nonlinear systems via adaptive sliding observer. Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, 2199–2204Google Scholar
  15. 15.
    Zhou, K., Doyle, J., Glover, K. (1995) Robust and Optimal Control. Prentice-Hall.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Chee Pin Tan
    • 1
  • Christopher Edwards
    • 1
  1. 1.Engineering DepartmentLeicester UniversityUK

Personalised recommendations