Generalized PID control of the average boost converter circuit model

  • Hebertt Sira-Ramírez
  • Gerardo Silva-Navarro
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 281)


In this article we examine, in the context of equilibrium-to-equilibrium reference trajectory tracking, the Generalized Proportional Integral Derivative (GPID) control of a nonlinear average model of a DC-to-DC power converter of the “Boost” type. The design approach relies on the converter’s tangent linearization model and Lyapunov stability theory. The performance of the feedback controlled nonlinear system is evaluated by means of digital computer simulations including large, unmodelled, load parameter variations.


Power Converter Boost Converter Digital Computer Simulation Nominal Trajectory Input Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fliess M., (1990) Some Basic Structural Properties of Generalized Linear Systems. Syst. and Contr. Let. 15, 391–396.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fliess, M. (2000) “Sur des Pensers Nouveaux Faisons des Vers Anciens”. In Actes Conférence Internationale Francophone d’Automatique (CIFA-2000), Lille. France, July2000.Google Scholar
  3. 3.
    Fliess M., Marquez R., and Delaleau E., (2000) State Feedbacks without Asymptotic Observers and Generalized PID regulators. Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek, (Eds), Lecture Notes in Control and Information Sciences 258. 367–384, Springer, London.CrossRefGoogle Scholar
  4. 4.
    Fliess M., Marquez R., Delaleau E., Sira-Ramirez H., (2001) Correcteurs Proportionnels-Intégraux Généralisés. ESAIM: Control, Optimization and Calculus of Variations (to appear).Google Scholar
  5. 5.
    Marquez R., Delaleau E., and Fliess M., (2000) Commande par PID Généralisé d’un Moteur Électrique sans Capteur Mécanique. In Actes Conf Èrence Internationale Francophone d’Automatique (CIFA-2000). Lille, France.Google Scholar
  6. 6.
    Rugh W., (1996). Linear System Theory. (2nd Edition), Prentice Hall, Upper Saddle River, N.J.zbMATHGoogle Scholar
  7. 7.
    Silverman L. M., (1966) Transformation of Time-Variable Systems to Canonical (Phase-Variable) Form. IEEE Transactions on Automatic Control, 11, 300–303.CrossRefGoogle Scholar
  8. 8.
    Sira-Ramírez H., (1989) A Geometric Approach to Pulse-Width-Modulated Control in Nonlinear Dynamical Systems. IEEE Transactions on Automatic Control. 34, 184–187.zbMATHCrossRefGoogle Scholar
  9. 9.
    Sira-Ramírez H., and Lischinsky-Arenas P., (1991) The Differential Algebraic Approach in Nonlinear Dynamical Compensator Design for Dc-to-Dc Power Converters. International Journal of Control, 54 111–134.CrossRefGoogle Scholar
  10. 10.
    Sira-Ramírez H., Pérez-Moreno R., Ortega R., and García-Esteban M., (1997) Passivity-Based Controllers for the Stabilization of DC-to-DC Power Converters. Automatica 33-.Google Scholar
  11. 11.
    Sira-Ramírez H., Márquez R., and Fliess M., (2001) Generalized PID Sliding Mode Control of DC-to-DC Power Converters. IFAC Symposium on System Structure, Prague, Czek Republic.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hebertt Sira-Ramírez
    • 1
  • Gerardo Silva-Navarro
    • 1
  1. 1.Dept. Ingeniería Eléctrica, Sección MecatrónicaCINVESTAV-IPNMéxico, D.F.México

Personalised recommendations