On computation of the logarithm of the Chen-Fliess series for nonlinear systems

  • Eugénio M. Rocha
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 281)


We obtain expressions for the logarithm of the Chen-Fliess series for a nonlinear control system. This logarithm provides an alternative to Sussmann’s exponential product expansion of the Chen-Fliess series. We also formulate a rule for generating the coefficient of any Lie brackets in the logarithm expansion.


Nonlinear Control System Canonical Homomorphism Algebra Product Motion Planning Algorithm Logarithm Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrachev A.A., Gamkrelidze R.V. (1978) Exponential representation of flows and chronological calculus. Matem. Sbornik 107, 467–532. English transl. in: Math. USSR Sbornik 35 (1979), 727–785.MathSciNetGoogle Scholar
  2. 2.
    Agrachev A.A., Gamkrelidze R.V. (1979) Chronological algebras and nonstationary vector fields. Journal Soviet Mathematics 17, 1650–1675 (in Russian).CrossRefGoogle Scholar
  3. 3.
    Agrachev A.A., Gamkrelidze R.V., Sarychev A.V. (1989) Local invariants of smooth control systems. Acta Applicandae Mathematicae 14, 191–237.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen K.T. (1957) Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Annals of Mathematics 65, 163–178.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fliess M. (1989) Fonctionelles causales nonlinéaires et indeterminées noncommutatives. Acta Appl. Math. 15, 3–40.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kawski M. (2000) Calculating the logarithm of the Chen Fliess series. International Journal Control (submitted) (also: elec. proc. MTNS 2000).Google Scholar
  7. 7.
    Kawski M., Sussmann H.J. (1997) Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory. in: Helmke U., Prätzel-Wolters D., Zerz E. Eds. Systems and Linear Algebra. Teubner, Stuttgart, 111–128.Google Scholar
  8. 8.
    Loday J-L. (2001) Dialgebras. in: Dialgebras and related operads. Springer Lecture Notes in Math. 1763, 7–66.CrossRefGoogle Scholar
  9. 9.
    Reutenauer C. (1993) Free Lie algebras. London Mathematical Society Monographs-new series 7, Oxford Science Publications.Google Scholar
  10. 10.
    Rocha E.M. (2001) On computation of the logarithm of the Chen-Fliess series for nonlinear systems. CM01/I-08, Departamento de matemática, Universidade de Aveiro.Google Scholar
  11. 11.
    Sarychev A.V. (2000) Stability criteria for time-periodic systems via high-order averaging techniques. in: Isidori A., Lamnabhi-Lagarrique F., Respondek W. Eds., Nonlinear Control in the Year 2000, 2, Springer-Verlag, Berlin et al, 365–377.Google Scholar
  12. 12.
    Sussmann H.J. (1986) A product expansion of the Chen series. In Theory and Applications of Nonlinear Control Systems, Byrnes C.I., Lindquist A. eds., Elsevier, North-Holland.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eugénio M. Rocha
    • 1
  1. 1.Departamento de MatemáticaUniversity of AveiroAveiroPortugal

Personalised recommendations