Advertisement

Stabilizability for boundary-value control systems using symbolic calculus of pseudo-differential operators

  • Markku T. Nihtilä
  • Jouko Tervo
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 281)

Abstract

The paper considers control systems which are constructed from certain pseudo-differential and boundary-value operators. The system contains the derivative control which is after a change of variables included in many such situations where the control variables (originally) appear in the boundary condition. Sufficient analytical conditions for some stability properties of the transfer function are shown. In addition, we describe some methods to compute the transfer function by means of symbolic calculus. An illustrative example is considered as well.

Keywords

Transfer Function Trace Operator Distribute Parameter System Symbolic Calculus Quasilinear Parabolic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, H. (1989) Feedback stabilization of linear and semilinear parabolic systems. In: Clément et al. (Eds.) Semigroup Theory and Applications, Lecture Notes Pure Appl. Math. 116. M. Dekker, New York, 21–57Google Scholar
  2. 2.
    Amann, H. (1995) Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory. Birkhäuser, BaselGoogle Scholar
  3. 3.
    Banks, S.P. (1983) State-space and Frequency-domain Methods in the Control of Distributed Parameter Systems. P. Peregrinus, LondonzbMATHGoogle Scholar
  4. 4.
    Callier, F.M., Desoer, C.A. (1982) Multivariable Feedback Systems. Springer, BerlinGoogle Scholar
  5. 5.
    Curtain, R.F., Zwart, H.J. (1995) An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New YorkzbMATHGoogle Scholar
  6. 6.
    Fattorini, H.O. (1999) Infinite Dimensional Optimization and Control Theory. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Grubb, G. (1986) Functional Calculus of Pseudo-Differential Boundary Problems. Birkhäuser, BostonzbMATHGoogle Scholar
  8. 8.
    Grubb, G. (1991) Parabolic Pseudo-Differential Boundary Problems and Applications. In: Cattabriga L., Rodino, L. (Eds.) Microlocal Analysis and Applications, Lecture Notes in Math., Vol. 1495, Springer, Berlin, 46–117CrossRefGoogle Scholar
  9. 9.
    Krainer, T. (2000) Parabolic Pseudodifferential Operators and Long-Time Asymptotics of Solutions. PhD Thesis, University of Potsdam, PotsdamzbMATHGoogle Scholar
  10. 10.
    Mossaheb, S. (1980) On the existence of right-coprime factorization for functions meromorphic in a half-plane. IEEE Trans. Aut. Control AC-25, 550–551CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pommaret, J.F. (2001) Controllability of nonlinear multidimensional control systems. In: Respondek, W. et al. (Eds.) Nonlinear Control of the Year 2000, Proc. NCN Conference, Vol. 2., Springer, Berlin, 245–255CrossRefGoogle Scholar
  12. 12.
    Quadrat, A. (2000) Internal stabilization of coherent control systems. Preprint, 1–16Google Scholar
  13. 13.
    Rempel, S., Schulze, B.-W. (1982) Index Theory of Elliptic Boundary Problems. Akademie-Verlag, BerlinzbMATHGoogle Scholar
  14. 14.
    Shulze, B.-W. (1998) Boundary Value Problems and Singular Pseudo-Differential Operators. WileyGoogle Scholar
  15. 15.
    Sule, V.R. (1998) Feedback stabilization over commutative rings: The matrix case. SIAM J. Control and Optimiz. 32, 1675–1695CrossRefMathSciNetGoogle Scholar
  16. 16.
    Tanabe, H. (1979) Equations of Evolution. Pitman, LondonzbMATHGoogle Scholar
  17. 17.
    Tervo, J., Nihtilä, M. (2000) Exponential stability of a nonlinear distributed parameter system. Zeitschrift für Analysis und ihre Anwendungen 19, 77–93zbMATHGoogle Scholar
  18. 18.
    Vidyasagar, M. (1985) Control System Synthesis. A Factorization Approach. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Markku T. Nihtilä
    • 1
  • Jouko Tervo
    • 1
  1. 1.Department of Computer Science and Applied MathematicsUniversity of KuopioKuopioFinland

Personalised recommendations