Adaptive compensation of multiple sinusoidal disturbances with unknown frequencies

  • Riccardo Marino
  • Giovanni L. Santosuosso
  • Patrizio Tomei
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 281)


It is addressed the problem of designing an output feedback compensator which drives to zero the state of a system affected by two additive noisy biased sinusoidal disturbances with unknown bias, magnitudes, phases and frequencies. The problem is solved for a linear, asymptotically stable, observable system of order n with known parameters by a [3n + 15] -order compensator. The regulating scheme contains exponentially convergent estimates of the biased sinusoidal disturbances and of its parameters, including frequencies. The algorithm is generalized to the case of an arbitrary number m of sinusoidal disturbances, with unknown parameters, yielding a [n(m + 1) + 2m 2 + 3m + 1]-order compensator.


Adaptive Observer Sinusoidal Disturbance Unknown Frequency Adaptive Compensation Disturbance Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastin, G. and M. Gevers (1988) Stable adaptive observers for nonlinear time varying systems. IEEE Trans. Automat. Contr. 33, 1054–1058.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bodson, M and S. C. Douglas (1997) Adaptive algorithms for the rejection of periodic disturbances with unknown frequencies. Automatica, 33, 2213–2221.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Canudas De Wit, C. and L. Praly (2000) Adaptive eccentricity compensation. IEEE Trans. Contr. Syst. Technology, 8, 757–766.CrossRefGoogle Scholar
  4. 4.
    Bodson, M A. Sacks and P. Khosla (1994) Harmonic generation in adaptive feedforward cancellation schemes. IEEE Trans. Automatic Contr., 39, pp. 1939–1944.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bodson, M. (1999) A discussion of Chaplin and Smith’s patent for the cancellation of repetitive vibration. IEEE Trans. Automat. Contr., 44, 2221–2225.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, D. and B. Paden (1993) Adaptive linearization of hybrid step motors: stability analysis”. IEEE Trans. Automat. Contr., 38, 874–887.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Davidson, E. J. (1976) The robust control of a servomechanism problem for linear time invariant multivariable systems. IEEE Trans. Automatic Control, 21, 25–34.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Francis, B. A. and W. M. Wonham (1975) The internal model principle for linear multivariable regulators. Appl. Math. Optim., 2, 170–194.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garimella S. S. and K. Srinivasan (1996) Application of repetitive control to eccentricity compensation in rolling”. J. Dyn. Syst., Meas., Contr., 118, 657–664.zbMATHCrossRefGoogle Scholar
  10. 10.
    Hsu, L. R. Ortega and G. Damm (1999) A globally convergent frequency estimator. IEEE Trans. Automat. Contr., 44, 698–713.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnson, C. D. (1971) Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Automatic Control, 16, 635–644.CrossRefGoogle Scholar
  12. 12.
    Khalil, H.K. (1996) Nonlinear Systems. Prentice Hall, Upper Saddle River, (NJ), 2-nd edition.Google Scholar
  13. 13.
    Kreisselmeier, (1977) Adaptive observers with exponential rate of convergence. IEEE Trans. Automat. Contr., 22, 2–8.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuo, S. M. and D. R. Morgan (1996) Active noise control systems. New York, Wiley.Google Scholar
  15. 15.
    Marino R. and P. Tomei (1992) Global adaptive observers for nonlinear systems via filtered transformations. IEEE Trans. Automatic Control, 37, 1239–1245.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Marino, R., and P. Tomei (1995) Nonlinear Control Design-Geometric, Adaptive and Robust. Prentice Hall, Hemel Hempstead.zbMATHGoogle Scholar
  17. 17.
    Marino, R., G. Santosuosso and P. Tomei (2001) Robust adaptive observers for nonlinear systems with bounded disturbances. IEEE Trans. Automat. Contr., 46, 967–972.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nikiforov, V.O. (1996) Adaptive servocompensation of input disturbances. Proc. 13th World IFAC Congr. 175–180, San Francisco, USA.Google Scholar
  19. 19.
    Nikiforov, V.O. (1997) Adaptive controller rejecting uncertain deterministic disturbances in SISO Systems. Proc. European Control Conf. Bruxelles.Google Scholar
  20. 20.
    Nikiforov, V.O. (1998) Adaptive nonlinear tracking with complete compensation of unknown disturbances. European Journal of Control, 4, 132–139.zbMATHGoogle Scholar
  21. 21.
    Nijmeijer, H. and A. J. Van Der Shaft (1990) Nonlinear dynamical control systems. Springer Verlag, New York.zbMATHGoogle Scholar
  22. 22.
    Pomet, J.B. and L. Praly (1992) Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Trans. Automat. Contr., 37, 729–740.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sacks, A. M. Bodson and P. Khosla (1996) Experimental results of adaptive periodic disturbance cancellation in a high performance magnetic disk drive. ASME J. Dynamic Systems Measurements and Control, 118, 416–424.zbMATHCrossRefGoogle Scholar
  24. 24.
    Serrani, A, Isidori, A, and L. Marconi (2000) Semiglobal nonlinear output regulation with adaptive internal model. IEEE 39th Conf. on Decision and Control, Sydney, 2, 1649–1654.Google Scholar
  25. 25.
    Sastry, S. and M. Bodson (1989) Adaptive control-stability, convergence and robustness. Prentice Hall, Englewood Cliffs, NJ.zbMATHGoogle Scholar
  26. 26.
    Shoureshi R. and P. Knurek, (1996) Automotive application of a hybrid active noise and vibration control. IEEE Contr. Syst. Mag., 16, 72–78.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Riccardo Marino
    • 1
  • Giovanni L. Santosuosso
    • 1
  • Patrizio Tomei
    • 1
  1. 1.Dipartimento Ingegneria ElettronicaUniversità di Roma ‘Tor Vergata’RomaItaly

Personalised recommendations