Advertisement

Enriching Wayfinding Instructions with Local Landmarks

  • Martin Raubal
  • Stephan Winter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2478)

Abstract

Navigation services communicate optimal routes to users by providing sequences of instructions for these routes. Each single instruction guides the wayfinder from one decision point to the next. The instructions are based on geometric data from the street network, which is typically the only dataset available. This paper addresses the question of enriching such wayfinding instructions with local landmarks. We propose measures to formally specify the landmark saliency of a feature. Values for these measures are subject to hypothesis tests in order to define and extract landmarks from datasets. The extracted landmarks are then integrated in the wayfinding instructions. A concrete example from the city of Vienna demonstrates the applicability and usefulness of the method.

Keywords

Street Network Decision Point Route Direction Local Landmark Historical Importance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, G., 1999. Spatial Abilities, Cognitive Maps, and Wayfinding—Bases for Individual Differences in Spatial Cognition and Behavior. In: Golledge, R. (Ed.), Wayfinding Behavior—Cognitive Mapping and Other Spatial Processes, Johns Hopkins University Press, Baltimore, pp. 46–80.Google Scholar
  2. 2.
    Burnett, G., 1998. Turn Right at the King’s Head. Drivers’ Requirements for Route Guidance Information. Ph.D., Loughborough University.Google Scholar
  3. 3.
    Burnett, G., Smith, D., and May, A., 2001. Supporting the Navigation Task: Characteristics of “Good” Landmarks. In: Hanson, M.A. (Ed.), Contemporary Ergonomics 2001, Taylor & Francis, London, pp. 441–446.Google Scholar
  4. 4.
    Deakin, A., 1996. Landmarks as Navigational Aids on Street Maps. Cartography and Geographic Information Systems, 23(1): 21–36.CrossRefGoogle Scholar
  5. 5.
    Denis, M., Pazzaglia, F., Cornoldi, C., and Bertolo, L., 1999. Spatial Discourse and Navigation: An Analysis of Route Directions in the City of Venice. Applied Cognitive Psychology, 13: 145–174.CrossRefGoogle Scholar
  6. 6.
    Downs, R. and Stea, D., 1977. Maps in Minds: Reflections on Cognitive Mapping. Harper and Row, New York.Google Scholar
  7. 7.
    Fellbaum, C. (Ed.), 1998. WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, Massachusetts.zbMATHGoogle Scholar
  8. 8.
    Fontaine, S. and Denis, M., 1999. The Production of Route Instructions in Underground and Urban Environments. In: Freksa, C. and Mark, D. (Eds.), Spatial Information Theory. Lecture Notes in Computer Science, 1661. Springer, Berlin, pp. 83–94.Google Scholar
  9. 9.
    Golledge, R., 1999. Human Wayfinding and Cognitive Maps. In: Golledge, R. (Ed.), Wayfinding Behavior—Cognitive Mapping and Other Spatial Processes, Johns Hopkins University Press, Baltimore, pp. 5–45.Google Scholar
  10. 10.
    Golledge, R., 1993. Geographical Perspectives on Spatial Cognition. In: Gärling, T. And Golledge, R. (Eds.), Behaviour and Environment: Psychological and Geographical Approaches, Elsevier, Amsterdam, pp. 16–46.CrossRefGoogle Scholar
  11. 11.
    Haala, N. and Anders, K.-H., 1996. Fusion of 2D-GIS and Image Data for 3D Building Reconstruction. International Archives of Photogrammetry and Remote Sensing, XXXI(B3): 285–290.Google Scholar
  12. 12.
    Habel, C., 1988. Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In: Schnelle, H. and Rickheit, G. (Eds.), Sprache in Mensch und Computer, Westdeutscher Verlag, Opladen, pp. 107–133.Google Scholar
  13. 13.
    Koch, K., 1999. Parameter Estimation and Hypothesis Testing in Linear Models. Springer, Berlin, 333 pp.zbMATHGoogle Scholar
  14. 14.
    Kuipers, B., 1978. Modeling Spatial Knowledge. Cognitive Science (2): 129–153.CrossRefGoogle Scholar
  15. 15.
    Lakoff, G., 1987. Women, Fire, and Dangerous Things: What Categories Reveal About the Mind. The University of Chicago Press, Chicago.Google Scholar
  16. 16.
    Livatino, S. and Madsen, C., 2000. Acquisition and Recognition of Visual Landmarks for Autonomous Robot Navigation, International Symposium on Intelligent Robotic Systems, Reading, UK, pp. 269–279.Google Scholar
  17. 17.
    Lovelace, K., Hegarty, M., and Montello, D., 1999. Elements of Good Route Directions in Familiar and Unfamiliar Environments. In: Freksa, C. and Mark, D. (Eds.), Spatial Information Theory. Lecture Notes in Computer Science, 1661. Springer, Berlin, pp. 65–82.Google Scholar
  18. 18.
    Lynch, K., 1960. The Image of the City. MIT Press, Cambridge, 194 pp.Google Scholar
  19. 19.
    Maaβ, W. and Schmauks, D., 1998. MOSES: Ein Beispiel für die Modellierung r:aumlicher Leistungen durch ein Wegebeschreibungssystem. Zeitschrift für Semiotik, 20(1–2): 105–118.Google Scholar
  20. 20.
    Mallot, H. and Allen, J., 2000. Computational Vision. MIT Press, Cambridge.Google Scholar
  21. 21.
    Merriam-Webster, 2001. Merriam-Websterrss Collegiate Dictionary. Merriam-Webster, Inc.Google Scholar
  22. 22.
    Metzger, W., 1936. Gesetze des Sehens. Senckenberg-Buch, VI. W. Kramer & Co., Frankfurt am Main.Google Scholar
  23. 23.
    Michon, P.-E. and Denis, M., 2001. When and Why are Visual Landmarks Used in Giving Directions? In: Montello, D. (Ed.), Spatial Information Theory. Lecture Notes in Computer Science, 2205. Springer, Berlin, pp. 292–305.CrossRefGoogle Scholar
  24. 24.
    Nicklas, D., Groβmann, M., Schwarz, T., Volz, S., and Mitschang, B., 2001. A Model-Based Open Architecture for Mobile, Spatially-Aware Applications. In: Jensen, C., M. Schneider, B. Seeger, and V. Tsotras (Eds.), Advances in Spatial and Temporal Databases. Lecture Notes in Computer Science, 2121. Springer, Berlin, pp. 117–135.CrossRefGoogle Scholar
  25. 25.
    Pasko, M. and Gruber, M., 1996. Fusion of 2D GIS Data and Aerial Images for 3D Building Reconstruction. International Archives of Photo grammetry and Remote Sensing, XXXI(B3): 257–260.Google Scholar
  26. 26.
    Pradhan, S., Brignone, C., Cui, J.-H., McReynolds, H., and Smith, M., 2001. Websigns: Hyperlinking Physical Locations to the Web. IEEE Computer Journal, 34(8): 42–48.Google Scholar
  27. 27.
    Rosch, E., 1978. Principles of Categorization. In: Rosch, E. and Lloyd, B. (Eds.), Cognition and Categorization, Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 27–48.Google Scholar
  28. 28.
    Siegel, A. and White, S., 1975. The Development of Spatial Representations of Large-Scale Environments. In: Reese, H. (Ed.), Advances in Child Development and Behavior, 10. Academic Press, New York, pp. 9–55.Google Scholar
  29. 29.
    Sorrows, M. and Hirtle, S., 1999. The Nature of Landmarks for Real and Electronic Spaces. In: Freksa, C. and Mark, D. (Eds.), Spatial Information Theory. Lecture Notes in Computer Science, 1661. Springer, Berlin, pp. 37–50.Google Scholar
  30. 30.
    Timpf, S. and Frank, A., 1997. Using Hierarchical Spatial Data Structures for Hierarchical Spatial Reasoning. In: Hirtle, S. and Frank, A. (Eds.), Spatial Information Theory. Lecture Notes in Computer Science. Springer, Berlin, pp. 69–83.CrossRefGoogle Scholar
  31. 31.
    Werner, S., Krieg-Brückner, B., Mallot, H., Schweizer, K., and Freksa, C., 1997. Spatial Cognition: The Role of Landmark, Route, and Survey Knowledge in Human and Robot Navigation. In: Jarke, M., Pasedach, K., and Pohl, K. (Eds.), Informatik’ 97. Springer, pp. 41–50.Google Scholar
  32. 32.
    Wertheimer, M., 1925. Über Gestalttheorie. Philosophische Zeitschrift für Forschung und Aussprache, 1: 39–60.Google Scholar
  33. 33.
    Yeh, E., 1995. Toward Selecting and Recognizing Natural Landmarks. Yale Technical Report 9503, Center for Systems Science, Yale University.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Martin Raubal
    • 1
  • Stephan Winter
    • 2
  1. 1.Institute for GeoinformaticsUniversity of MünsterMünsterGermany
  2. 2.Institute for GeoinformationVienna University of TechnologyViennaAustria

Personalised recommendations