Skip to main content

Computational Topology for Point Data: Betti Numbers of α-Shapes

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 600))

Abstract

The problem considered belowis that of determining information about the topology of a subset X ⊂ ℝn given only a finite point approximation to X. The basic approach is to compute topological properties — such as the number of components and number of holes — at a sequence of resolutions, and then to extrapolate. Theoretical foundations for taking this limit come from the inverse limit systems of shape theory and Čech homology. Computer implementations involve constructions from discrete geometry such as alpha shapes and the minimal spanning tree.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Software available from NCSA via anonymous ftp from http://ftp.ncsa.uiuc.edu/Visualization/Alpha-shape/.

  2. Arns, C.H., M.A. Knackstedt, W.V. Pinczewski, and K. Mecke (2001): ‘Characterisation of irregular spatial structures by parallel sets and integral geometric measures’. Applied Mathematics, preprint. (RSPhysSE, ANU, Canberra)

    Google Scholar 

  3. Barnsley, M.F. (1993): Fractals Everywhere, second edition. (Academic Press, Boston)

    MATH  Google Scholar 

  4. Cormen, T.H., C.E. Leiserson, and R.L. Rivest (1990): Introduction to Algorithms. (MIT Press, Cambridge, MA)

    MATH  Google Scholar 

  5. Delfinado, C.J.A., and H. Edelsbrunner (1995): ‘An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere’. Computer Aided Geometric Design 12, pp. 771–784.

    Article  MATH  MathSciNet  Google Scholar 

  6. Dey, T.K., H. Edelsbrunner, and S. Guha. (1999): ‘Computational topology’. In: Advances in Discrete and Computational Geometry, volume 223 of Contemporary Mathematics. ed. by B. Chazelle, J.E. Goodman, and R. Pollack (American Mathematical Society)

    Google Scholar 

  7. Dey, T.K., and S. Guha. (1998): ‘Computing homology groups of simplicial complexes in R 3’. Journal of the ACM 45 pp. 266–287.

    Article  MATH  MathSciNet  Google Scholar 

  8. Edelsbrunner, H. (1995): ‘The union of balls and its dual shape’. Discrete and Computational Geometry 13, pp. 415–440.

    Article  MATH  MathSciNet  Google Scholar 

  9. Edelsbrunner, H., D.G. Kirkpatrick, and R. Seidel (1983): ‘On the shape of a set of points in the plane’. IEEE Transactions on Information Theory 29, pp. 551–559.

    Article  MATH  MathSciNet  Google Scholar 

  10. Edelsbrunner, H., D. Letscher, and A. Zomorodian (2000): ‘Topological persistence and simplification’. 41st Annual Symposium on Foundations of Computer Science.

    Google Scholar 

  11. Edelsbrunner, H., and E.P. Mücke (1994): ‘Three-dimensional alpha shapes’. ACM Transactions on Graphics 13, pp. 43–72.

    Article  MATH  Google Scholar 

  12. Falconer, K. (1990): Fractal Geometry: Mathematical Foundations and Applications. (Wiley, Chichester)

    MATH  Google Scholar 

  13. Friedman, J. (1998): ‘Computing Betti numbers via combinatorial Laplacians’. Algorithmica 21, pp. 331–346.

    Article  MATH  MathSciNet  Google Scholar 

  14. Hall, P. (1988): Introduction to the Theory of Coverage Processes. (Wiley, Chichester)

    MATH  Google Scholar 

  15. Hocking, J.G., and G.S. Young (1961): Topology. (Addison-Wesley)

    Google Scholar 

  16. Hoshen, J. and Kopelman, R. (1976): ‘Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm’. Physical Review B 14, pp. 3438–3445.

    Article  ADS  Google Scholar 

  17. Hutchinson, J.E. (1981): ‘Fractals and self similarity’. Indiana University Mathematics Journal 30, pp. 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kalies, W.D., K. Mischaikow, and G. Watson (1999): ‘Cubical approximation and computation of homology’. Banach Center Publications 47, pp. 115–131.

    MathSciNet  Google Scholar 

  19. Lee, C.-N., T. Posten, and A. Rosenfeld (1991): ‘Winding and Euler numbers for 2D and 3D digital images’. CVGIP: Graphical Models and Image Processing 53, pp. 522–537.

    Article  MATH  Google Scholar 

  20. Mardešić, S. and J. Segal (1982): Shape Theory. (North-Holland)

    Google Scholar 

  21. Mecke, K. (1998): ‘Integral geometry and statistical physics’. International Journal of Modern Physics B 12, pp. 861–899.

    Article  ADS  MathSciNet  Google Scholar 

  22. Mecke, K. and D. Stoyan (Eds.) (2000): Statistical Physics and Spatial Statistics — The Art of Analyzing and Modeling Spatial Structures and Pattern Formation Lecture Notes in Physics 554 (Springer-Verlag, Berlin)

    MATH  Google Scholar 

  23. Mecke, J., and Stoyan, D. (2001): ‘The specific connectivity number of random networks’. Advances in Applied Probability 33, pp. 576–583.

    Article  MATH  MathSciNet  Google Scholar 

  24. Munkres, J.R. (1984): Elements of Algebraic Topology. (Benjamin Cummings)

    Google Scholar 

  25. Nagel, W., J. Ohser, and K. Pischang (2000): ‘An integral-geometric approach for the Euler-Poincaré characteristic of spatial images’. Journal of Microscopy 198, pp. 54–62.

    Article  Google Scholar 

  26. Peitgen, H.-O., S. Jürgens, and D. Saupe. (1992): Chaos and Fractals: New Frontiers of Science. (Springer-Verlag, Berlin)

    Google Scholar 

  27. Prim, R.S. (1957): ‘Shortest connection networks and some generalizations’. The Bell System Technical Journal November 1957, pp. 1389–1401.

    Google Scholar 

  28. Robins, V., J.D. Meiss, and E. Bradley (1998): ‘Computing connectedness: An exercise in computational topology’. Nonlinearity 11, pp. 913–922.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Robins, V., J.D. Meiss, and E. Bradley (2000): ‘Computing connectedness: Disconnectedness and discreteness’. Physica D 139, pp. 276–300.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Robins, V. (2000): Computational topology at multiple resolutions. PhD Thesis, Department of Applied Mathematics, University of Colorado, Boulder.

    Google Scholar 

  31. Robins, V. (1999): ‘Towards computing homology from finite approximations’. Topology Proceedings 24, pp. 503–532.

    MATH  MathSciNet  Google Scholar 

  32. Stoyan, D., W.S. Kendall, and J. Mecke (1987): Stochastic Geometry and its Applications. (Wiley, Chichester)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robins, V. (2002). Computational Topology for Point Data: Betti Numbers of α-Shapes. In: Mecke, K., Stoyan, D. (eds) Morphology of Condensed Matter. Lecture Notes in Physics, vol 600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45782-8_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45782-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44203-5

  • Online ISBN: 978-3-540-45782-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics