Skip to main content

On the Impossibility of Constructing Non-interactive Statistically-Secret Protocols from Any Trapdoor One-Way Function

  • Conference paper
  • First Online:
Topics in Cryptology — CT-RSA 2002 (CT-RSA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2271))

Included in the following conference series:

Abstract

We show that non-interactive statistically-secret bit commitment cannot be constructed from arbitrary black-box one-to-one trapdoor functions and thus from general public-key cryptosystems. Reducing the problems of non-interactive crypto-computing, rerandomizable encryption, and non-interactive statistically-sender-private oblivious transfer and low-communication private information retrieval to such commitment schemes, it follows that these primitives are neither constructible from one-to-one trapdoor functions and public-key encryption in general. Furthermore, our separation sheds some light on statistical zero-knowledge proofs. There is an oracle relative to which one-to-one trapdoor functions and one-way permutations exist, while the class of promise problems with statistical zero-knowledge proofs collapses in P. This indicates that nontrivial problems with statistical zero-knowledge proofs require more than (trapdoor) one-wayness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Aiello, J. HÅstad: Statistical Zero-Knowledge Languages can be Recognized in Two Rounds, Journal of Computer and System Science, Vol. 42, pp. 327–345, 1991.

    Article  MATH  Google Scholar 

  2. W. Aiello, J. HÅstad: Relativized Perfect Zero-Knowledge is not BPP, Information and Computation, Vol. 93, pp. 223–240, 1991.

    Article  MathSciNet  Google Scholar 

  3. W. Aiello, Y. Ishai, O. Reingold: Priced Oblivious Transfer: How to Sell Digital Goods, Eurocrypt 2001, Lecture Notes in Computer Science, Vol. 2045, Springer-Verlag, 2001.

    Chapter  Google Scholar 

  4. A. Beimel, Y. Ishai, E. Kushilevitz, T. Malkin: One-Way Functions are Essential for Single-Server Private Information Retrieval, Proceedings of the 31st Annual ACM Symposium on the Theory of Computing (STOC), pp. 89–98, 1999.

    Google Scholar 

  5. M. Bellare, S. Halevi, A. Sahai, S. Vadhan: Many-To-One Trapdoor Functions and Their Relation to Public-Key Cryptosystems, Crypto’ 98, Lecture Notes in Computer Science, Vol. 1462, Springer-Verlag, pp. 283–298, 1998.

    Google Scholar 

  6. M. Bellare, S. Micali: Non-Interactive Oblivious Transfer and Applications, Crypto’ 89, Lecture Notes in Computer Science, Vol. 435, Springer-Verlag,pp. 547–559, 1990.

    Google Scholar 

  7. M. Ben-or, O. Goldreich, S. Goldwasser, J. HÅstad, J. Killian, S. Micali, P. Rogaway: Everything Provable is Provable in Zero-Knowledge, Crypto’ 88, Lecture Notes in Computer Science, Vol. 403, Springer-Verlag, pp. 37–56, 1990.

    Google Scholar 

  8. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan: Private Information Retrieval, Journal of ACM, vol. 45, pp. 965–981, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. CrÉpeau, F. LÉgarÉ, L. Savail: How to Convert a Flavor of Quantum Bit Commitment, Eurocrypt 2001, Lecture Notes in Computer Science, Vol. 2045, Springer-Verlag, 2001.

    Chapter  Google Scholar 

  10. I. Damg \( \dot {\rm A} \) rd, T. Pedersen, B. Pfitzmann: On the Existence of Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures, Crypto’ 93, Lecture Notes in Computer Science, Vol. 773, Springer-Verlag, pp. 250–255, 1993.

    Google Scholar 

  11. A. De Santis, G. Di Crescenzo, G. Persiano: Public-Key Cryptography and Zero-Knowledge Arguments, Information and Computation, Vol. 121, No. 1, pp. 23–40, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Di Crescenzo, T. Okamoto, M. Yung: Keeping the SZK-Verifier Honest Unconditionally, Crypto’ 97, Lecture Notes in Computer Science, Vol. 1294, Springer-Verlag, pp. 31–45, 1997.

    Google Scholar 

  13. W. Diffie, M. Hellman: New Directions in Cryptography, IEEE Transaction on Information Theory, Vol. 22, pp. 644–654, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Dumais, D. Mayers, L. Salvail: Perfectly Concealing Quantum Bit Commitment from Any One-Way Permutation, Eurocrypt 2000, Lecture Notes in Computer Science, Vol. 1807, Springer-Verlag, pp. 300–315, 2000.

    Chapter  Google Scholar 

  15. S. Even, O. Goldreich, A. Lempel: A Randomized Protocol for Signing Contracts, Communication of the ACM, vol. 28, pp. 637–647, 1985.

    Article  MathSciNet  Google Scholar 

  16. L. Fortnow: The Complexity of Perfect Zero-Knowledge, Proceedings of the 19th Annual ACM Symposium on the Theory of Computing (STOC), pp. 204–209, 1987.

    Google Scholar 

  17. R. Gennaro, L. Trevisan: Lower Bounds on the Efficiency of Generic Cryptographic Constructions, Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), 2000.

    Google Scholar 

  18. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, M. Viswanathan: The Relationship Between Public Key Encryption and Oblivious Transfer, Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), 2000.

    Google Scholar 

  19. O. Goldreich, A. Sahai, S. Vadhan: Can Statistical Zero-Knowledge be made Non-Interactive? or On the Relationship of SZK and NISZK, Crypto’ 99, Lecture Notes in Computer Science, Springer-Verlag, 1999.

    Google Scholar 

  20. O. Goldreich, A. Sahai, S. Vadhan: Honest-Verifier Statistical Zero-Knowledge Equals General Statistical Zero-Knowledge, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), ACM Press, pp. 399–408, 1998.

    Google Scholar 

  21. S. Goldwasser, O. Goldreich, S. Micali: How to Construct Random Functions, Journal of ACM, vol. 33, pp. 792–807, 1986.

    Article  MathSciNet  Google Scholar 

  22. S. Goldwasser, S. Micali: Probabilistic Encryption, Journal of Computer and System Science, Vol. 28, pp. 270–299, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Halevi, S. Micali: Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing, Crypto’ 96, Lecture Notes in Computer Science, Vol. 1109, Springer-Verlag, pp. 201–215, 1996.

    Google Scholar 

  24. J. HÅstad, R. Impagliazzo, L. Levin, M. Luby: A Pseudorandom Generator from any One-way Function, SIAM Journal on Computing, vol. 28(4), pp. 1364–1396, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Impagliazzo, M. Luby: One-Way Functions are Essential for Complexity Based Cryptography, Proceedings of the 30th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 230–235, 1989.

    Google Scholar 

  26. R. Impagliazzo, S. Rudich: Limits on the Provable Consequences of One-Way Permutations, Proceedings of the 21st Annual ACM Symposium on the Theory of Computing (STOC), pp. 44–61, 1989.

    Google Scholar 

  27. R. Impagliazzo, M. Yung: Direct Minimum-Knowledge Computations, Crypto’ 87, Lecture Notes in Computer Science, Vol. 293, Springer-Verlag, pp. 40–51, 1987.

    Google Scholar 

  28. J. Kahn, M. Saks, C. Smyth: A Dual Version of Reimer’s Inequality and a Proof of Rudich’s Conjecture, Proceedings of 15th IEEE Conference on Computational Complexity, 2000.

    Google Scholar 

  29. J. Kim, D. Simon, P. Tetali: Limits on the Efficiency of One-Way Permutation-Based Hash Functions, Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS), 1999.

    Google Scholar 

  30. M. Naor: Bit Commitment Using Pseudo-Randomness, Journal of Cryptology, vol. 4, pp. 151–158, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung: Perfect Zero-Knowledge Arguments for NP Using Any One-Way Permutation, Journal of Cryptology, vol. 11, pp. 87–108, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Naor, B. Pinkas: Efficient Oblivious Transfer Protocols, Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

    Google Scholar 

  33. M. Naor, M. Yung: Universal One-Way Hash Functions and Their Cryptographic Applications, Proceedings of the 21st Annual ACM Symposium on the Theory of Computing (STOC), pp. 33–43, 1989.

    Google Scholar 

  34. R. Ostrovsky: One-Way Functions, Hard on Average Problems, and Statistical Zero-Knowledge Proofs, IEEE Conference on Structure in Complexity Theory, pp. 133–138, 1991.

    Google Scholar 

  35. R. Ostrovsky, R. Venkatesan, M. Yung: Fair Games Against an All-Powerful Adversary, AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 13, pp. 155–169, 1993.

    MathSciNet  Google Scholar 

  36. R. Ostrovsky, A. Wigderson: One-Way Functions are Essential for Non-Trivial Zero-Knowledge, Proceedings of the Second Israel Symposium on Theory of Computing and Systems, 1993.

    Google Scholar 

  37. M. Rabin: How to Exchange Secrets by Oblivious Transfer, Technical Report TR-81, Harvard, 1981.

    Google Scholar 

  38. J. Rompel: One-Way Functions are Necessary and Sufficient for Secure Signatures, Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing (STOC), pp. 387–394, 1990.

    Google Scholar 

  39. S. Rudich: The Use of Interaction in Public Cryptosystems, Crypto’ 91, Lecture Notes in Computer Science, Vol. 576, Springer-Verlag,pp. 242–251, 1992.

    Google Scholar 

  40. A. Sahai, S. Vadhan: A Complete Promise Problem for Statistical Zero-Knowledge, Proceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 448–457, 1997.

    Google Scholar 

  41. A. Sahai, S. Vadhan: Manipulating Statistical Difference, AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 43, pp. 251–270, 1999.

    MathSciNet  Google Scholar 

  42. T. Sander, A. Young, M. Yung: Non-Interactive Crypto-Computing for NC1, Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS), 1999.

    Google Scholar 

  43. A. Shamir: IP=PSPACE, Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (FOCS), 1990.

    Google Scholar 

  44. D. Simon: On the Power of Quantum Computation, Proceedings of the 35th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 124–134, 1994.

    Google Scholar 

  45. D. Simon: Finding Collisions on a One-Way Street: Can Secure Hash Functions be Based on General Assumptions?, Eurocrypt’ 98, Lecture Notes in Computer Science, Vol. 1403, Springer-Verlag, pp. 334–345, 1998.

    Chapter  Google Scholar 

  46. S. Vadhan: A Study of Statistical Zero-Knowledge Proofs, Ph.D. thesis, MIT, vailable at http://theory.lcs.mit.edu/~salil/, September 1999.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischlin, M. (2002). On the Impossibility of Constructing Non-interactive Statistically-Secret Protocols from Any Trapdoor One-Way Function. In: Preneel, B. (eds) Topics in Cryptology — CT-RSA 2002. CT-RSA 2002. Lecture Notes in Computer Science, vol 2271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45760-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45760-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43224-1

  • Online ISBN: 978-3-540-45760-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics