A Cross-Modal Electronic Travel Aid Device

  • F. Fontana
  • A. Fusiello
  • M. Gobbi
  • V. Murino
  • D. Rocchesso
  • L. Sartor
  • A. Panuccio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2411)

Abstract

This paper describes the design of an Electronic Travel Aid device, that will enable blind individuals to “see the world with their ears.” A wearable prototype will be assembled using low-cost hardware: earphones, sunglasses fitted with two CMOS micro cameras, and a palmtop computer. Currently, the system is able to detect the light spot produced by a laser pointer, compute its angular position and depth, and generate a correspondent sound providing the auditory cues for the perception of the position and distance of the pointed surface. In this way the blind person can use a common pointer as a replacement of the cane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Bar-Shalom and T. Fortmann. Tracking and Data Association. AP, 1988.Google Scholar
  2. 2.
    Durand R. Begault. 3D Sound for virtual reality and multimedia. AP Professional, 955 Massachusetts Avenue, Cambridge, 1994.Google Scholar
  3. 3.
    J. Blauert. Spatial Hearing: the Psychophysics of Human Sound Localization. MIT Press, Cambridge, MA, 1983.Google Scholar
  4. 4.
    R. C. Bolles, H. H. Baker, and M. J. Hannah. The JISCT stereo evaluation. In Proceedings of the Image Understanding Workshop, pages 263–274, Washington, DC, April 1993. ARPA, Morgan Kaufmann.Google Scholar
  5. 5.
    C. P. Brown and R. O. Duda. A structural model for binaural sound synthesis. 6(5):476–488, September 1998.Google Scholar
  6. 6.
    Jr S. A. Dallas. Sound pattern generator. WIPO Patent No. WO82/00395., 1980.Google Scholar
  7. 7.
    U. R. Dhond and J. K. Aggarwal. Structure from stereo-a review. IEEE Transactions on Systems, Man and Cybernetics, 19(6):1489–1510, Nov/Dec 1989.Google Scholar
  8. 8.
    O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, Cambridge, MA, 1993.Google Scholar
  9. 9.
    R. Fish. An audio display for the blind. IEEE Trans. Biomed. Eng., 23(2), 1976.Google Scholar
  10. 10.
    M. Kubovy and D. Van Valkenburg. Auditory and visual objects. Cognition, 80:97–126, 2001.CrossRefGoogle Scholar
  11. 11.
    Heinrich Kuttruff. Room Acoustics. Elsevier Science, Essex, England, 1991.Google Scholar
  12. 12.
    Kay L. Air sonar with acoustical display of spatial information. In Animal Sonar System, pages 769–816, New York, 1980.Google Scholar
  13. 13.
    The LAR-DEIS Videt Project. University of Bologna-Italy. Available at URL http://www.lar.deis.unibo.it/activities/videt.
  14. 14.
    J. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks, Pacific Grove, CA, 1989.MATHGoogle Scholar
  15. 15.
    E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision. Prentice-Hall, 1998.Google Scholar
  16. 16.
    Scott A. Van Duyne and Julius O. Smith. Physical modeling with the 2-D digital waveguide mesh. pages 40–47, Tokyo, Japan, 1993. ICMA.Google Scholar
  17. 17.
    Scott A. Van Duyne and Julius O. Smith. A Simplified Approach to Modeling Dispersion Caused by Stiffness in Strings and Plates. pages 407–410, Aarhus, Denmark, September 1994. ICMA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • F. Fontana
    • 1
  • A. Fusiello
    • 1
  • M. Gobbi
    • 1
  • V. Murino
    • 1
  • D. Rocchesso
    • 1
  • L. Sartor
    • 1
  • A. Panuccio
    • 1
  1. 1.Dipartimento di InformaticaUniversity of VeronaVeronaItaly

Personalised recommendations