Neuro-symbolic System for Forecasting Red Tides

  • Florentino Fdez-Riverola
  • Juan M. Corchado
  • Jesús M. Torres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2464)


A hybrid neuro-symbolic problem solving model is presented in which the aim is to forecast parameters of a complex and dynamic environment in an unsupervised way. In situations in which the rules that determine a system are unknown, the prediction of the parameter values that determine the characteristic behaviour of the system can be a problematic task. In such a situation, it has been found that a hybrid case-based reasoning (CBR) system can provide a more effective means of performing such predictions than other connectionist or symbolic techniques. The system employs a CBR model to wrap a growing cell structures network, a radial basis function network and a set of Sugeno fuzzy models to provide an accurate prediction. Each of these techniques is used in a different stage of the reasoning cycle of the CBR system to retrieve historical data, to adapt it to the present problem and to review the proposed solution. The results obtained from experiments, in which the system operated in a real environment, are presented.


Radial Basis Function Radial Basis Function Neural Network Radial Basis Function Network Sugeno Fuzzy Model Case Base Reasoning System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomczak, M., Godfrey, J. S.: Regional Oceanographic: An Introduction. Pergamon, New York, (1994)Google Scholar
  2. 2.
    Fernández, E.: Las Mareas Rojas en las Rías Gallegas. Technical Report, Department of Ecology and Animal Biology. University of Vigo, (1998)Google Scholar
  3. 3.
    Corchado, J. M., Fyfe, C.: Unsupervised Neural Network for Temperature Forecasting. Artificial Intelligence in Engineering, 13, num. 4, (1999) 351–357CrossRefGoogle Scholar
  4. 4.
    Corchado, J. M., Lees, B.: A Hybrid Case-based Model for Forecasting. Applied Artificial Intelligence, 15, num. 2, (2001) 105–127CrossRefGoogle Scholar
  5. 5.
    Corchado, J. M., Lees, B., Aiken, J.: Hybrid Instance-based System for Predicting Ocean Temperatures. International Journal of Computational Intelligence and Applications, 1, num. 1, (2001) 35–52CrossRefGoogle Scholar
  6. 6.
    Corchado, J. M., Aiken, J., Rees, N.: Artificial Intelligence Models for Oceanographic Forecasting. Plymouth Marine Laboratory, U.K., (2001)Google Scholar
  7. 7.
    Nakhaeizadeh, G.: Learning prediction of time series. A theoretical and empirical comparison of CBR with some other approaches. Proceedings of First European Workshop on Case-Based Reasoning, EWCBR-93, Kaiserslautern, Germany, (1993) 65–76Google Scholar
  8. 8.
    Lendaris, G. G., Fraser, A. M.: Visual Fitting and Extrapolation. Weigend, A. S., Fershenfield, N. A. (Eds.). Time Series Prediction, Forecasting the Future and Understanding the Past. Addison Wesley, (1994) 35Google Scholar
  9. 9.
    Lekkas, G. P., Arouris, N. M., Viras, L. L.: Case-Based Reasoning in Environmental Monitoring Applications. Artificial Intelligence, 8, (1994) 349–376Google Scholar
  10. 10.
    Faltings, B.: Probabilistic Indexing for Case-Based Prediction. Proceedings of Case-Based Reasoning Research and Development, Second International Conference, ICCBR-97, Providence, Rhode Island, USA, (1997), 611–622Google Scholar
  11. 11.
    Mcintyre, H. S., Achabal, D. D., Miller, C. M.: Applying Case-Based Reasoning to Forecasting Retail Sales. Journal of Retailing, 69, num. 4, (1993), 372–398CrossRefGoogle Scholar
  12. 12.
    Stottler, R. H.: Case-Based Reasoning for Cost and Sales Prediction. AI Expert, (1994), 25–33Google Scholar
  13. 13.
    Weber-Lee, R., Barcia, R. M., Khator, S. K.: Case-based reasoning for cash flow forecasting using fuzzy retrieval. Proceedings of the First International Conference on Case-Based Reasoning, ICCBR-95, Sesimbra, Portugal, (1995), 510–519Google Scholar
  14. 14.
    Corchado, J. M., Lees, B., Fyfe, C., Ress, N., Aiken, J.: Neuro-adaptation method for a case based reasoning system. Computing and Information Systems Journal, 5, num. 1, (1998), 15–20Google Scholar
  15. 15.
    Pal, S. K., Dilon, T. S., Yeung, D. S.: Soft Computing in Case Based Reasoning. Springer Verlag, London, (2000)Google Scholar
  16. 16.
    Azuaje, F., Dubitzky, W., Black, N., Adamson, K.: Discovering Relevance Knowledge in Data: A Growing Cell Structures Approach. IEEE Transactions on Systems, Man and Cybernetics, 30, (2000) 448–460CrossRefGoogle Scholar
  17. 17.
    Fritzke, B.: Fast learning with incremental RBF Networks. Neural Processing Letters, 1, num. 1, (1994) 2–5CrossRefGoogle Scholar
  18. 18.
    Jin, Y., Seelen, W. von., Sendho., B.: Extracting Interpretable Fuzzy Rules from RBF Neural Networks. Internal Report IRINI 00-02, Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany, (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Florentino Fdez-Riverola
    • 1
  • Juan M. Corchado
    • 2
  • Jesús M. Torres
    • 3
  1. 1.Dpto. de Informática, E.S.E.I.University of VigoOurenseSpain
  2. 2.Dpto. de Informática y AutomáticaUniversity of SalamancaSalamancaSpain
  3. 3.Dpto. de Física AplicadaUniversity of VigoVigoSpain

Personalised recommendations