Skip to main content

Approximating Dependency Graphs Using Tree Automata Techniques

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2083))

Included in the following conference series:

Abstract

The dependency pair method of Arts and Giesl is the most powerful technique for proving termination of term rewrite systems automatically. We show that the method can be improved by using tree automata techniques to obtain better approximations of the dependency graph. This graph determines the ordering constraints that need to be solved in order to conclude termination. We further show that by using our approximations the dependency pair method provides a decision procedure for termination of right-ground rewrite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA, volume 1833 of LNCS, pages 261–264, 2000.

    Google Scholar 

  2. T. Arts and J. Giesl. Modularity of termination using dependency pairs. In Proc. 9th RTA, volume 1379 of LNCS, pages 226–240, 1998.

    Google Scholar 

  3. T. Arts and J. Giesl. Applying rewriting techniques to the verification of Erlang processes. In Proc. 13th CSL, volume 1862 of LNCS, pages 457–471, 2000.

    Google Scholar 

  4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-oretical Computer Science, 236:133–178, 2000.

    MathSciNet  MATH  Google Scholar 

  5. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

    Google Scholar 

  6. F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra in Engineering, Communication and Computing, 1:79–96, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Comon. Sequentiality, monadic second-order logic and tree automata. Information and Computation, 157:25–51, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and applications, 1999. Draft, available from http://www.grappa.univ-lille3.fr/tata/.

  9. N. Dershowitz. Termination of linear rewriting systems (preliminary version). In Proc. 8th ICALP, volume 115 of LNCS, pages 448–458, 1981.

    Google Scholar 

  10. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17:279–301, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Durand and A. Middeldorp. Decidable call by need computations in term rewriting. In Proc. 14th CADE, volume 1249 of LNAI, pages 4–18, 1997.

    Google Scholar 

  12. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Applicable Algebra in Engineering, Communication and Computing, 2001. To appear.

    Google Scholar 

  13. J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Proc. 17th CADE, volume 1831 of LNAI, pages 309–323, 2000.

    Google Scholar 

  14. J. Giesl and E. Ohlebusch. Pushing the frontiers of combining rewrite systems farther outwards. In Proc. FroCoS’98, volume 7 of Studies in Logic and Computation, pages 141–160. Wiley, 2000.

    Google Scholar 

  15. G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, I and II. In Computational Logic, Essays in Honor of Alan Robinson, pages 396–443. The MIT Press, 1991. Original version: Report 359, Inria, 1979.

    Google Scholar 

  16. F. Jacquemard. Decidable approximations of term rewriting systems. In Proc. 7th RTA, volume 1103 of LNCS, pages 362–376, 1996.

    Google Scholar 

  17. S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering. Unpublished manuscript, University of Illinois, 1980.

    Google Scholar 

  18. D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

    Google Scholar 

  19. K. Kusakari. Termination, AC-Termination and Dependency Pairs of Term Rewriting Systems. PhD thesis, JAIST, 2000.

    Google Scholar 

  20. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proc. 1st PPDP, volume 1702 of LNCS, pages 48–62, 1999.

    Google Scholar 

  21. K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs. Research Report IS-RR-98-0026F, School of Information Science, JAIST, 1998.

    Google Scholar 

  22. D. Lankford. On proving term rewriting systems are noetherian. Report MTP-3, Louisiana Technical University, 1979.

    Google Scholar 

  23. C. Marché and X. Urbain. Termination of associative-commutative rewriting by dependency pairs. In Proc. 9th RTA, volume 1379 of LNCS, pages 241–255, 1998.

    Google Scholar 

  24. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. In Proc. 10th RTA, volume 1631 of LNCS, pages 256–270, 1999.

    Google Scholar 

  25. T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting systems effectively preserve recognizability. In Proc. 11th RTA, volume 1833 of LNCS, pages 246–260, 2000.

    Google Scholar 

  26. S. Tison. Tree automata and term rewrite systems, July 2000. Invited tutorial at the 11th RTA.

    Google Scholar 

  27. H. Zantema. Termination of term rewriting: Interpretation and type elimination. Journal of Symbolic Computation, 17:23–50, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae, 24:89–105, 1995.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Middeldorp, A. (2001). Approximating Dependency Graphs Using Tree Automata Techniques. In: Goré, R., Leitsch, A., Nipkow, T. (eds) Automated Reasoning. IJCAR 2001. Lecture Notes in Computer Science, vol 2083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45744-5_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-45744-5_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42254-9

  • Online ISBN: 978-3-540-45744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics