Skip to main content

The Molecular Mechanism of ATP Synthesis by F1F0-ATP Synthase: A Scrutiny of the Major Possibilities

  • Chapter
  • First Online:
Book cover Tools and Applications of Biochemical Engineering Science

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 74))

Abstract

A critical goal of metabolism in living cells is the synthesis of adenosine triphosphate (ATP). ATP is synthesized by the enzyme F1F0-ATP synthase. This enzyme, the smallest-known molecular machine, couples proton translocation through its membrane-embedded, hydrophobic domain, F0, to the synthesis of ATP from adenosine diphosphate (ADP) and inorganic phosphate (Pi) in its soluble, hydrophilic headpiece, F1. Animals, plants and microorganisms all capture and utilize energy by this important chemical reaction. How does it occur? The binding change mechanism and the torsional mechanism of energy transduction and ATP synthesis are two mechanisms that have been proposed in the literature. According to the binding change mechanism (which considers reversible catalysis and site-site cooperativity), energy is required primarily for release of synthesized ATP, but not for its synthesis. On the other hand, according to the torsional mechanism (which considers an irreversible mode of catalysis and absence of cooperativity), all the elementary steps require energy, and the ion-protein interaction energy obtained from the ion gradients is used to synthesize ATP, for Pi binding, and for straining the β-ε bond in order to enable ADP to bind. The energy to release preformed ATP from the tight catalytic site (βdp) is provided by the formation of the β-ε ester linkage. First, the central features of these mechanisms are clearly delineated. Then, a critical scrutiny of these mechanisms is undertaken. The predictions of the torsional mechanism are listed. In particular, how the torsional mechanism deals with the specific difficulties associated with other mechanisms, and how it seeks to explain a wealth of structural, spectroscopic, and biochemical data is discussed in detail. Recent experimental data in support of the mechanism are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiske CH, SubbaRow Y (1929) Science 70:381

    Article  CAS  Google Scholar 

  2. Lohmann K (1929) Naturwissenschaften 17:624

    CAS  Google Scholar 

  3. Lipmann F (1941) Adv Enzymol 1:99

    CAS  Google Scholar 

  4. Penefsky HS, Pullman ME, Datta A, Racker E (1960) J Biol Chem 235:3330

    CAS  Google Scholar 

  5. Boyer PD (1998) Angew Chem Int Ed Engl 37:2296

    Article  Google Scholar 

  6. Slater EC (1953) Nature 172:975

    Article  CAS  Google Scholar 

  7. Mitchell P (1961) Nature 191:144

    Article  CAS  Google Scholar 

  8. Mitchell P (1966) Biol Rev 41:445

    Article  CAS  Google Scholar 

  9. Williams RJP (1961) J Theor Biol 1:1

    Article  CAS  Google Scholar 

  10. Williams RJP (1962) J Theor Biol 3:209

    Article  CAS  Google Scholar 

  11. Boyer PD (1965) In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems. Wiley, New York, p 994

    Google Scholar 

  12. Boyer PD, Cross RL, Momsen W (1973) Proc Natl Acad Sci USA 70:2837

    Article  CAS  Google Scholar 

  13. Boyer PD (1993) Biochim Biophys Acta 1140:215

    Article  CAS  Google Scholar 

  14. Cross RL, Duncan TM (1996) J Bioenerg Biomembr 28:403

    Article  CAS  Google Scholar 

  15. Nath S (2000) Molecular Physiological Engineering: A New Frontier. 41st Annual Conference of the Association of Microbiologists of India, Jaipur, India, p 3

    Google Scholar 

  16. Rohatgi H, Saha A, Nath S (1998) Curr Sci 75:716; erratum (2000) 78:201

    CAS  Google Scholar 

  17. Nath S, Rohatgi H, Saha A (1999) Curr Sci 77:167

    CAS  Google Scholar 

  18. Nath S, Rohatgi H, Saha A (2000) Curr Sci 78:23

    CAS  Google Scholar 

  19. Nath S, Jain S (2000) Biochem Biophys Res Commun 272:629

    Article  CAS  Google Scholar 

  20. Jain S, Nath S (2000) FEBS Lett 476:113

    Article  CAS  Google Scholar 

  21. Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Nature 370:621

    Article  CAS  Google Scholar 

  22. Boyer PD (1997) Annu Rev Biochem 66:717

    Article  CAS  Google Scholar 

  23. Ramasarma T (1998) Curr Sci 74:953

    CAS  Google Scholar 

  24. Nakamoto RK, Ketchum CJ, Al-Shawi MK (1999) Annu Rev Biophys Biomol Struct 28:205

    Article  CAS  Google Scholar 

  25. Allison WS (1998) Acc Chem Res 31:819

    Article  CAS  Google Scholar 

  26. Fillingame RH, Jiang W, Dmitriev OY, Jones PC (2000) Biochim Biophys Acta 1458:387.

    Article  CAS  Google Scholar 

  27. Bianchet MA, Hullihen J, Pedersen PL, Amzel LM (1998) Proc Natl Acad Sci USA 95:11065.

    Article  CAS  Google Scholar 

  28. Weber J, Senior AE (1997) Biochim Biophys Acta 1319:19

    Article  CAS  Google Scholar 

  29. Wilkens S, Capaldi RA (1998) Nature 393:29.

    Article  CAS  Google Scholar 

  30. Zhou Y, Duncan TM, Cross RL (1997) Proc Natl Acad Sci USA 94:10583

    Article  CAS  Google Scholar 

  31. Ogilvie I, Aggeler R, Capaldi RA (1997) J Biol Chem 272:16652

    Article  CAS  Google Scholar 

  32. Sabbert D, Engelbrecht S, Junge W (1996) Nature 381:623

    Article  CAS  Google Scholar 

  33. Sabbert D, Junge W (1997) Proc Natl Acad Sci USA 94:2312

    Article  CAS  Google Scholar 

  34. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Nature 386:299

    Article  CAS  Google Scholar 

  35. Yasuda R, Noji H, Kinosita K, Yoshida M ( 1998) Cell 93:1117

    Article  CAS  Google Scholar 

  36. Shirakihara Y, Leslie AGW, Abrahams JP, Walker JE, Ueda T, Sekimoto Y, Kambara M, Saika K, Kagawa Y, Yoshida M (1997) Structure 5:825

    Article  CAS  Google Scholar 

  37. Boyer PD (2000) Biochim Biophys Acta 1458:252

    Article  CAS  Google Scholar 

  38. Löbau S, Weber J, Senior AE (1998) Biochemistry 37:10846

    Article  Google Scholar 

  39. Hatefi Y (1993) Eur J Biochem 218:759

    Article  CAS  Google Scholar 

  40. Menz RI, Walker JE, Leslie AGW (2001) Cell 106:331

    Article  CAS  Google Scholar 

  41. Adachi K, Yasuda R, Noji H, Itoh H, Harada Y, Yoshida M, Kinosita K (2000) Proc Natl Acad Sci USA 97:7243

    Article  CAS  Google Scholar 

  42. Nath S (1994) A fundamental thermodynamic principle for coupling in oxidative phosphorylation. 16th Int Congr Biochemistry and Molecular Biology, New Delhi, India, vol II, p390

    Google Scholar 

  43. Nath S (1998) Pure Appl Chem 70:639

    Article  CAS  Google Scholar 

  44. Weber J, Senior AE (2000) Biochim Biophys Acta 1458:300

    Article  CAS  Google Scholar 

  45. Garcia JJ, Capaldi RA (1998) J Biol Chem 273:15940

    Article  CAS  Google Scholar 

  46. Böttcher B, Gräber P (2000) Biochim Biophys Acta 1458:404

    Article  Google Scholar 

  47. Senior AE, Nadanaciva S, Weber J (2000) J Exp Biol 203:35

    CAS  Google Scholar 

  48. Al-Shawi MK, Ketchum CJ, Nakamoto RK (1997) Biochemistry 36:12961

    Article  CAS  Google Scholar 

  49. Grubmeyer C, Cross RL, Penefsky HS (1982) J Biol Chem 257:12092

    CAS  Google Scholar 

  50. Fischer S, Gräber P (1999) FEBS Lett 457:327

    Article  CAS  Google Scholar 

  51. Hausrath AC, Grüber G, Matthews BW, Capaldi RA (1999) Proc Natl Acad Sci USA 96:13697

    Article  CAS  Google Scholar 

  52. Possmayer FP, Gräber P (1994) J Biol Chem 269:1896

    CAS  Google Scholar 

  53. Pänke O, Rumberg B (1996) FEBS Lett 383:196

    Article  Google Scholar 

  54. Estabrook W, Holowinski A (1960) J Biophys Biochem Cyt 9:19

    Article  Google Scholar 

  55. Mitchell P (1979) Science 206:1148

    Article  CAS  Google Scholar 

  56. Kaim G, Dimroth P (1999) EMBO J 18:4118

    Article  CAS  Google Scholar 

  57. Jain S, Nath S (2001) Thermochim Acta 378:35

    Article  CAS  Google Scholar 

  58. Elston T, Wang H, Oster G (1998) Nature 391:510

    Article  CAS  Google Scholar 

  59. Vik SB, Antonio BJ (1994) J Biol Chem 269:30364

    CAS  Google Scholar 

  60. Dmitriev OY, Jones PC, Fillingame RH (1999) Proc Natl Acad Sci USA 96:7785

    Article  CAS  Google Scholar 

  61. Rastogi VK, Girvin ME ( 1999) Nature 402:263

    Article  CAS  Google Scholar 

  62. Massari S, Azzone GF (1970) Eur J Biochem 12:301

    Article  CAS  Google Scholar 

  63. Azzone GF, Massari S (1971) Eur J Biochem 19:97

    Article  CAS  Google Scholar 

  64. Tedeschi H (1975) FEBS Lett 59:1

    Article  CAS  Google Scholar 

  65. Tupper JT, Tedeschi H (1969) Science 166:1539

    Article  CAS  Google Scholar 

  66. Ochoa S (1943) J Biol Chem 151:493

    CAS  Google Scholar 

  67. Ernster L (1993) FASEB J 7:1520

    CAS  Google Scholar 

  68. Ferguson SJ (2000) Curr Biol 10:R804

    Article  CAS  Google Scholar 

  69. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W.H. Freeman, New York, p 647

    Google Scholar 

  70. Slater EC, Rosing J, Mol A (1973) Biochim Biophys Acta 292:534

    Article  CAS  Google Scholar 

  71. Hinkle PC, Kumar MA, Resetar A, Harris DL (1991) Biochemistry 30:3576

    Article  CAS  Google Scholar 

  72. Lee CP, Gu Q, Xiong Y, Mitchell RA, Ernster L (1996) FASEB J 10:345

    CAS  Google Scholar 

  73. Zeng AP, Ross A, Deckwer W-D (1990) Biotechnol Bioeng 36:965

    Article  CAS  Google Scholar 

  74. Stucki JW (1980) Eur J Biochem 109:269

    Article  CAS  Google Scholar 

  75. Lemasters JJ (1984) J Biol Chem 259:13123

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Wolf-Dieter Deckwer on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nath, S. (2002). The Molecular Mechanism of ATP Synthesis by F1F0-ATP Synthase: A Scrutiny of the Major Possibilities. In: Schügerl, K., et al. Tools and Applications of Biochemical Engineering Science. Advances in Biochemical Engineering/Biotechnology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45736-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45736-4_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42250-1

  • Online ISBN: 978-3-540-45736-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics