Skip to main content

Kinetic Stabilities of Gadolinium(III) Chelates Used as MRI Contrast Agents

  • Chapter
  • First Online:
Contrast Agents I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 221))

Abstract

Equilibrium calculations indicate that the Gd3+ chelates used as contrast agents in MRI may partly dissociate in the body fluids. However, the results of the kinetic studies point to the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes being slow at pH > 5. The excretion of these contrast agents from the body is relatively fast so that the system is far from the equilibrium and the extent of in vivo dissociation is very low.

The rate constants, characterizing the dissociation of Gd3+ chelates, used to compare the kinetic stabilities, are about 103 times lower for the macrocyclic DOTA derivative complexes than for the complexes of the open-chain DTPA derivatives. The rigid structure of ligands is highly important for the inertness of the complexes. The use of functional groups in the ligands, possessing donor atoms of lower basicity (e.g. amide, phosphinate or phosphonate ester), result in significantly lower stability constants, but the kinetic stability of complexes is practially not influenced. Substituents, attached to the diethylenetriamine backbone, increase the kinetic stability of the DTPA derivative complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Tweedle MF (1989) Relaxation Agents in NMR Imaging. In: BĂ¼nzli J-CG, Choppin GR (eds) Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice, Elsevier, Amsterdam, p. 129–179

    Google Scholar 

  2. Lauffer RB (1987) Chem Rev 99:2353

    Google Scholar 

  3. Yu S-B, Watson AD (1999) Chem Rev 87:901

    Google Scholar 

  4. Jarvis NN, Wagener JM, Jackson GE (1995) J Chem Soc Dalton Trans 2269

    Google Scholar 

  5. Volkert WA, Hoffman TJ (1999) Chem Rev 99:2269

    Article  CAS  Google Scholar 

  6. Cox PL, Jankowski KJ, Kataky R, Parker D, Beeley NRA, Boyce BA, Eaton MAW, Millar K, Millican AT, Harrison A, Walker C (1989) J Chem Soc Chem Commun 797

    Google Scholar 

  7. Reichert DE, Lewis JS, Anderson CJ (1999) Coord Chem Rev 184:3

    Article  CAS  Google Scholar 

  8. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Chem Rev 99:2293

    Article  CAS  Google Scholar 

  9. Schuhmann-Giampieri G, Schmitt-Willich H, Press W-R, Negishi C, Weinmann H-J, Speck U (1992) Radiology 183:59

    CAS  Google Scholar 

  10. Schmitt-Willich H, Brehm M, Ewers ChLJ, Michl G, MĂ¼ller-Fahrow A, Petrov O, Platzek J, RadĂ¼chel B, SĂ¼lzle D (1999) Inorg Chem 38:1134

    Article  CAS  Google Scholar 

  11. Uggeri F, Aime S, Anelli PL, Botta M, Brochetta M, de Haën C, Ermondi G, Grandi M, Paoli P (1995) Inorg Chem 34:633

    Article  CAS  Google Scholar 

  12. Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB (1997) Invest Radiol 32:741

    Article  CAS  Google Scholar 

  13. Weinmann HJ, Laniado M, MĂ¼tzel W (1984) Physiol Chem Phys Med NMR 16:167

    CAS  Google Scholar 

  14. Weinmann HJ, Brasch RC, Press W-R, Wesbey GE (1984) AJR 142:619

    CAS  Google Scholar 

  15. Wedeking P, Kumar K, Tweedle MF (1992) Magn Reson Imaging 10:641

    Article  CAS  Google Scholar 

  16. Tweedle MF, Wedeking P, Kumar K (1995) Invest Radiol 30:372

    Article  CAS  Google Scholar 

  17. Cacheris WP, Quay SC, Rocklage SM (1990) Magn Reson Imaging 8:467

    Article  CAS  Google Scholar 

  18. Puttagunta NR, Gibby WA, Puttagunta VL (1996) Invest Radiol 31:619

    Article  CAS  Google Scholar 

  19. Martell AE, Smith KM (1974) Critical Stability Constants, vol. 1, Plenum Press, New York

    Google Scholar 

  20. Sarka L, Burai L, BrĂ¼cher E (2000) Chem Eur J 6:719

    Article  CAS  Google Scholar 

  21. May PM, Linder PW, Williams DR (1977) J Chem Soc Dalton Trans 588

    Google Scholar 

  22. Jackson GE, Wynchank S, Woudenberg M (1990) Magn Reson Med 16:57

    Article  CAS  Google Scholar 

  23. Kasokat T, Urich K (1992) Arzneim-Forsch/Drug Res 42:869

    CAS  Google Scholar 

  24. Puttagunta NR, Gibby WA, Smith GT (1996) Invest Radiol 31:739

    Article  CAS  Google Scholar 

  25. Betts RH, Dahlinger DG, Munro DM (1958) In: Exterman RC (ed) Radioisotopes in Scientific Research, vol. 2, Pergamon Press, Oxford, p. 326

    Google Scholar 

  26. Glentworth P, Wiseall B, Wright CL, Mahmood AJ (1968) J Inorg Nucl Chem 10:967

    Article  Google Scholar 

  27. BrĂ¼cher E, Szarvas P (1970) Inorg Chim Acta 4:632

    Article  Google Scholar 

  28. Asano T, Okada S, Taniguchi S (1970) J Inorg Nucl Chem 32:1287

    Article  CAS  Google Scholar 

  29. Ryhl T (1972) Acta Chem Scand 26:3955

    Article  CAS  Google Scholar 

  30. D’Olieslager W, Choppin GR (1971) J Inorg Nucl Chem 33:127

    Article  CAS  Google Scholar 

  31. BrĂ¼cher E, Laurenczy G (1981) J Inorg Nucl Chem 43:2089

    Article  Google Scholar 

  32. BrĂ¼cher E, Laurenczy G (1983) Inorg Chem 22:338

    Article  Google Scholar 

  33. Margerum DW, Cayley GR, Weatherburn DC, Pagenkopf GK (1978):Martell AE (ed) Coordination Chemistry, vol 2, ACS Monograph 174, American Chemical Society, Washington D.C., p. 1

    Google Scholar 

  34. Burai L, Hietapelto, KirĂ¡ly R, TĂ³th É, BrĂ¼cher E (1997) Magn Reson Med 38:146

    Article  CAS  Google Scholar 

  35. Magerstadt M, Gansow OA, Brechbiel MW, Colcher D, Baltzer L, Knop RH, Girton ME, Naegele M (1986) Magn Reson Med 3:808

    Article  CAS  Google Scholar 

  36. Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Magn Reson Imaging 9:409

    Article  CAS  Google Scholar 

  37. Puttagunta NR, Gibby WA, Puttagunta VL (1996) Invest Radiol 31:619

    Article  CAS  Google Scholar 

  38. McMurry TJ, Pippin CJ, Wu C, Deal KA, Brechbiel MW, Mirzadeh S, Gansow OA (1998) J Med Chem 41:3546

    Article  CAS  Google Scholar 

  39. Pulukkody KP, Norman TJ, Parker D, Royle L, Broan CJ (1993) J Chem Soc Perkin Trans 2:605

    Google Scholar 

  40. LĂ¡zĂ¡r I, Sherry AD, Ramasamy R, BrĂ¼cher E, KirĂ¡ly R (1991) Inorg Chem 30:5016

    Article  Google Scholar 

  41. Muller RN, RadĂ¼chel B, Laurent S, Platzek J, PiĂ©rart C, Mareski P, Vander Elst L (1999) Eur J Inorg Chem 1949

    Google Scholar 

  42. Rothermel GL, Rizkalla EN, Choppin GR (1997) Inorg Chim Acta 262:133

    Article  CAS  Google Scholar 

  43. Sarka L, Burai L, BrĂ¼cher E, to be published

    Google Scholar 

  44. Choi K-Y, Kim KS, Kim JC (1994) Polyhedron 13:567

    Article  CAS  Google Scholar 

  45. Desreux JF (1980) Inorg Chem 19:1319

    Article  CAS  Google Scholar 

  46. Wang X, Jin T, Comblin V, Lopez-Mut A, Merciny E, Desreux JF (1992) Inorg Chem 31:1095

    Article  CAS  Google Scholar 

  47. Kumar K, Chang CA, Tweedle MF (1993) Inorg Chem 32:587

    Article  CAS  Google Scholar 

  48. Kumar K, Jin T, Wang X, Desreux JF, Tweedle MF (1994) Inorg Chem 33:3823

    Article  CAS  Google Scholar 

  49. Schwizer R, Fraser R, Maecke H, Siebold K, Funck R, Fried M (1994) Magn Reson Med 31:388

    Article  CAS  Google Scholar 

  50. TĂ³th É, BrĂ¼cher E, LĂ¡zĂ¡r I, TĂ³th I (1994) Inorg Chem 33:4070

    Article  Google Scholar 

  51. Cai H-Z, Kaden TA (1994) Helv Chim Acta 77:383

    Article  CAS  Google Scholar 

  52. TĂ³th É, KirĂ¡ly R, Platzek J, RadĂ¼chel B, BrĂ¼cher E (1996) Inorg Chim Acta 249:191

    Article  Google Scholar 

  53. BrĂ¼cher E, Sherry AD (1990) Inorg Chem 29:1555

    Article  Google Scholar 

  54. SzilĂ¡gyi E, TĂ³th É, BrĂ¼cher E, Merbach AE (1999) J Chem Soc Dalton Trans 2481

    Google Scholar 

  55. Broan CJ, Cox JPL, Craig AS, Kataky R, Parker D, Harrison A, Randall AM, Ferguson G (1991) J Chem Soc Perkin Trans 2:87

    Google Scholar 

  56. Burai L, KirĂ¡ly R, LĂ¡zĂ¡r I, BrĂ¼cher E (2001) Eur J Inorg Chem 813

    Google Scholar 

  57. BrĂ¼cher E, Laurenczy G, Makra Zs (1987) Inorg Chim Acta 139:141

    Article  Google Scholar 

  58. Clarke ET, Martell AE (1991) Inorg Chim Acta 190:37

    Article  CAS  Google Scholar 

  59. Burai L (1997) Thesis, University of Debrecen, Debrecen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

BrĂ¼cher, E. (2002). Kinetic Stabilities of Gadolinium(III) Chelates Used as MRI Contrast Agents. In: Krause, W. (eds) Contrast Agents I. Topics in Current Chemistry, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45733-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45733-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42247-1

  • Online ISBN: 978-3-540-45733-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics