A New Ant Colony Algorithm Using the Heterarchical Concept Aimed at Optimization of Multiminima Continuous Functions

  • Johann Dréo
  • Patrick Siarry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2463)


Ant colony algorithms are a class of metaheuristics which are inspired from the behaviour of real ants. The original idea consisted in simulating the trail communication, therefore these algorithms are considered as a form of adaptive memory programming. A new formalization is proposed for the design of ant colony algorithms, introducing the biological notions of heterarchy and communication channels.


Particle Swarm Optimization Communication Channel Pheromonal Trail Analytical Test Function Biological Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Bilchev and I.C. Parmee. The Ant Colony Metaphor for Searching Continuous Design Spaces. Lecture Notes in Computer Science, 993:25–39, 1995.Google Scholar
  2. E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg. Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects. BCEC, pages 36–45, 1997.Google Scholar
  3. S. Camazine, J.L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-Organization in Biological Systems. 2000.Google Scholar
  4. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant Colonies. In Elsevier Publishing, editor, Proceedings of ECAL’91-European Conference on Arti.cial Life, pages 134–142, 1991.Google Scholar
  5. J. Dréo. Modélisation de la mobilisation chez les fourmis. Mémoire de dea, Université Paris7 & Université Libre de Bruxelles, 2001.Google Scholar
  6. Glover F. and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.Google Scholar
  7. B. Hölldobler and E.O. Wilson. The Ants. Springer Verlag, 1990.Google Scholar
  8. J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. on Neural Networks, volume IV, pages 1942–1948, Piscataway, NJ: IEEE Service Center, 1995.Google Scholar
  9. N. Monmarché, G. Venturini, and M. Slimane. On how Pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems, 16:937–946, 2000.CrossRefGoogle Scholar
  10. E.D. Taillard, L. Gambardella, M. Gendreau, and J-Y. Potvin. Adaptive Memory Programming: A Unified View of Metaheuristics. In EURO XVI Conference Tutorial and Research Reviews booklet, Brussels, 1998. EURO.Google Scholar
  11. E.O. Wilson and B. Hölldobler. Dense Heterarchy and mass communication as the basis of organization in ant colonies. Trend in Ecology and Evolution, 3:65–68, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Johann Dréo
    • 1
  • Patrick Siarry
    • 1
  1. 1.Laboratoire d’Étude et de Recherche en Instrumentation Signaux et Systèmes (L.E.R.I.S.S.)Université de Paris XII Val-de-MarneCréteilFrance

Personalised recommendations