Skip to main content

Detection of Oriented Repetitive Alternating Patterns in color Images

A Computational Model of Monkey Grating Cells

  • Conference paper
  • First Online:
Book cover Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2084))

Included in the following conference series:

  • 1415 Accesses

Abstract

In 1992 neurophysiologists [20] found a new type of cells in areas V1 and V2 of the monkey primary visual cortex, which they called grating cells. These cells respond vigorously to a grating pattern of appropriate orientation and periodicity. Three years later a computational model inspired by these findings was published [9]. The study of this paper is to create a grating cell operator that has similar response profiles as monkey grating cells have. Three different databases containing a total of 338 real world images of textures are applied to the new operator to get better a insight to which natural patterns grating cells respond. Based on these images, our findings are that grating cells respond best to repetitive alternating patterns of a specific orientation. These patterns are in common human made structures, like buildings, fabrics, and tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Albrecht, R. L. de Valois, and L. G. Thorell. Visual cortical neurons: are bars or gratings the optimal stimuli? Science, 207:88–90, 1980.

    Article  Google Scholar 

  2. B. W. Andrews and D. A. Pollen. Relationship between spatial frequency selectivity and receptive field profile of simple cells. J. Physiol., 287:163–176, 1979.

    Google Scholar 

  3. John G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Amer., 2(7):1160–1169, 1985.

    Article  Google Scholar 

  4. K. R. Gegenfurther, D. C. Kiper, and S. B. Fenstemaker. Processing of color, form, and motion in macaque area v2. Visual Neuroscience, 13:161–172, 1996.

    Google Scholar 

  5. D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology, London, 160:106–154, 1962.

    Google Scholar 

  6. D. H. Hubel and T. N. Wiesel. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol., 154:106–154, 1974.

    Google Scholar 

  7. J. Jones and L. Palmer. An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58:1233–1258, 1987.

    Google Scholar 

  8. E. Kaplan and R. M. Shapley. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc. Natl. Acad. Sci. U.S.A., 83:2755–2757, April 1986.

    Article  Google Scholar 

  9. P. Kruizinga and N. Petkov. A computational model of periodic-pattern-selective cells. In J. Mira and F. Sandoval, editors, Proceedings of the International Workshop on Artificial Neural Networks, IWANN’ 95, volume 930 of Lecture Notes in Computer Science, pages 90–99. Springer-Verlag, June 7-9 1995.

    Google Scholar 

  10. M. S. Livingstone and D. H. Hubel. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci., 4:309–356, 1984.

    Google Scholar 

  11. T. Lourens. A Biologically Plausible Model for Corner-based Object Recognition from Color Images. Shaker Publishing B.V., Maastricht, The Netherlands, March 1998.

    MATH  Google Scholar 

  12. M. C. Morrone and D. C. Burr. Feature detection in human vision: A phasedependent energy model. Proc. of the Royal Society of London, 235:335–354, 1988.

    Google Scholar 

  13. J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Receptive field organization of complex cells in the cat’s striate cortex. Journal of Physiology, 283:53–77, 1978.

    Google Scholar 

  14. N. Petkov and P. Kruizinga. Computational models of visual neurons specialized in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells. Biological Cybernetics, 76(2):83–96, 1997.

    Article  MATH  Google Scholar 

  15. H. Tamura, H. Sato, N. Katsuyama, Y. Hata, and T. Tsumoto. Less segregated processing of visual information in v2 than in v1 of the monkey visual cortex. Eur. J. Neuroscience, 8:300–309, 1996.

    Article  Google Scholar 

  16. K. K. De Valois, R. L. De Valois, and E. W. Yund. Responses of striate cortical cells ito grating and checkerboard patterns. J. Physiol. (Lond.), 291:483–505, 1979.

    Google Scholar 

  17. R. L. De Valois, D. G. Albrecht, and L. G. Thorell. Cortical cells: bar and edge detectors, or spatial frequency filters. In S. J. Cool and E. L. Smith III, editors, Frontiers of Visual Science, Berlin, Heidelberg, New York, 1978. Springer.

    Google Scholar 

  18. R. von der Heydt. Approaches to visual cortical function. In Reviews of Physiology Biochemistry and Pharmacology, volume 108, pages 69–150. Springer-Verlag, 1987.

    Article  Google Scholar 

  19. Rüdiger von der Heydt, Esther Peterhans, and Max R. Dürsteler. Grating cells in monkey visual cortex: Coding texture? Visual Cortex. In B. Blum, editor, Channels in the visual nervous system: neurophysiology, psychophysics and models, pages 53–73, London, 1991. Freund Publishing House Ltd.

    Google Scholar 

  20. Rüdiger von der Heydt, Esther Peterhans, and Max R. Dürsteler. Periodic-Patternselective Cells in Monkey Visual Cortex. The Journal of Neuroscience, 12(4):1416–1434, April 1992.

    Google Scholar 

  21. R. P. Würtz and T. Lourens. Corner detection in color images through a multiscale combination of end-stopped cortical cells. Image and Vision Computing, 18(6-7):531–541, April 2000.

    Article  Google Scholar 

  22. S. Zeki. A Vision of the Brain. Blackwell science Ltd., London, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lourens, T., Okuno, H.G., Kitano, H. (2001). Detection of Oriented Repetitive Alternating Patterns in color Images. In: Mira, J., Prieto, A. (eds) Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. IWANN 2001. Lecture Notes in Computer Science, vol 2084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45720-8_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45720-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42235-8

  • Online ISBN: 978-3-540-45720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics