Advertisement

Sequencing by Hybridization (SBH): Advantages, Achievements, and Opportunities

  • Radoje Drmanac
  • Snezana Drmanac
  • Gloria Chui
  • Robert Diaz
  • Aaron Hou
  • Hui Jin
  • Paul Jin
  • Sunhee Kwon
  • Scott Lacy
  • Bill Moeur
  • Jay Shafto
  • Don Swanson
  • Tatjana Ukrainczyk
  • Chongjun Xu
  • Deane Little
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 77)

Abstract

Efficient DNA sequencing of the genomes of individual species and organisms is a critical task for the advancement of biological sciences, medicine and agriculture. Advances in modern sequencing methods are needed to meet the challenge of sequencing such megabase to gigabase quantities of DNA. Two possible strategies for DNA sequencing exist: direct methods, in which each base position in the DNA chain is determined individually (e.g., gel sequencing or pyrosequencing), and indirect methods, in which the DNA sequence is assembled based on experimental determination of oligonucleotide content of the DNA chain. One promising indirect method is sequencing by hybridization (SBH), in which sets of oligonucleotides are hybridized under conditions that allow detection of complementary sequences in the target nucleic acid. The unprecedented sequence search parallelism of the SBH method has allowed development of high-throughput, low-cost, miniaturized sequencing processes on arrays of DNA samples or probes. Newly developed SBH methods use DNA ligation to combine relatively small sets of short probes to score potentially tens of millions of longer oligonucleotide sequences in a target DNA. Such combinatorial approaches allow analysis of DNA samples of up to several kilobases (several times longer than allowed by current direct methods) for a variety of DNA sequence analysis applications, including de novo sequencing, resequencing, mutation/SNP discovery and genotyping, and expression monitoring. Future advances in biochemistry and implementation of detection methods that allow single-molecule sensitivity may provide the necessary miniaturization, specificity, and multiplexing efficiency to allow routine whole genome analysis in a single solution-based hybridization experiment.

Keywords

Sequencing Hybridization Oligonucleotide Arrays Ligation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanger F, Nicklen S, Coulson A (1977) Proc Natl Acad Sci USA 74:5463CrossRefGoogle Scholar
  2. 2.
    Hyman RD (1988) Anal Biochem 158:423CrossRefGoogle Scholar
  3. 3.
    Ronaghi M (2001) Genome Res 11:3CrossRefGoogle Scholar
  4. 4.
    Jett JH et al. (1989) J Biomol Struct Dyn 7:301Google Scholar
  5. 5.
    Lindsay SM, Philipp M (1991) Genet Anal Tech Appl 8:8Google Scholar
  6. 6.
    Beebe TP, Wilson TE, Ogletree DF, Katz JE, Balhorn R, Salmeron MB, Siekhaus WJ (1989) Science 243:370CrossRefGoogle Scholar
  7. 7.
    Woolley AT et al. (2000) Nat Biotechnol 18:760CrossRefGoogle Scholar
  8. 8.
    Church et al. (1998) US Patent 5 795 782Google Scholar
  9. 9.
    Sanger F, Brownlee GG, Barrell, BG (1965) J Mol Biol 13:373Google Scholar
  10. 10.
    Holey RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965) Science 147:1462CrossRefGoogle Scholar
  11. 11.
    Murray K (1970) Biochem J 118:831Google Scholar
  12. 12.
    Drmanac R, Crkvenjakov R (1987) Yugoslav Patent Application 570/87 (Issued as R Drmanac, R Crkvenjakov, Method of sequencing of genomes by hybridization with oligonucleotide probes. U.S. Patent 5,202,231 (1993))Google Scholar
  13. 13.
    Drmanac R, Drmanac S, Little D (2000) Encyclopedia of Analytical Chemistry: “Sequencing and Fingerprintig DNA by Hybridization”, p. 5232–5257Google Scholar
  14. 14.
    Doty P, Marmur J, Eigen J, Schildkraut CE (1960) Proc Natl Acad Sci USA 46:461CrossRefGoogle Scholar
  15. 15.
    Beaucage JL, Caruthers MH (1981) Tetrahedron Lett 22:1859CrossRefGoogle Scholar
  16. 16.
    Wallace RB, Shaffer J, Murphy RE, Bonner J, Hirose T, Itakura K (1979) Nucleic Acids Res 6:3543CrossRefGoogle Scholar
  17. 17.
    Poustka A, Lehrach H (1986) Trends Genet 2:174CrossRefGoogle Scholar
  18. 18.
    Mullis KB, Faloona FA (1987) Methods Enzymol 155:335CrossRefGoogle Scholar
  19. 19.
    Drmanac R, Labat I, Brukner I, Crkvenjakov R (1989) Genomics 4:114CrossRefGoogle Scholar
  20. 20.
    Bains W, Smith GC (1988) J Theor Biol 135:303CrossRefGoogle Scholar
  21. 21.
    Southern E (1988) International Patent Application PCT GB 89/00460Google Scholar
  22. 22.
    Lysov YP, Florentiev VL, Khorlyn AA, Khrapko KR, Shick VV, Mirzabekov AD (1988) Dokl Akad Nauk SSSR 303:1508Google Scholar
  23. 23.
    Macevicz SC (1989) International Patent Application PCUS89 04741Google Scholar
  24. 24.
    Pevzner PA, Lipshutz RJ (1995) Towards DNA sequencing chips. In: Privara I, Rovan B, Ruzicka P (eds) Mathematical foundations of computer science 1994 in: The proceedings of 19th international symposium, MFCS’ 94. Springer-Verlag, Kosice, Slovakia, BerlinGoogle Scholar
  25. 25.
    Drmanac R (1999) US Patent application published as WO 00/40758Google Scholar
  26. 26.
    Preparata FP, Fieze AM, Upfal E (1999) 3rd Annual International Conference on Computational Biology. Lyon, FranceGoogle Scholar
  27. 27.
    Khrapko KR, Lysov YP, Khorlyn AA, Shick VV, Florentiev VL, Mirzabekov AD (1989) FEBS Lett, 256:118CrossRefGoogle Scholar
  28. 28.
    Drmanac R, Crkvenjakov R (1992) International Journal of Genome Research 1:59Google Scholar
  29. 29.
    Drmanac R, Drmanac S, Strezoska Z, Paunesku T, Labat I, Zeremski M, Snoddy J, Funkhouser WK, Koop B, Hood L, Crkvenjakov R (1993) Science 260:1649CrossRefGoogle Scholar
  30. 30.
    Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Science 274:610CrossRefGoogle Scholar
  31. 31.
    Drmanac S, Kita D, Labat I, Hauser B, Burczak J, Drmanac R (1998) Nat Biotechnol 16:54CrossRefGoogle Scholar
  32. 32.
    Strezoska Z, Paunesku T, Radosavljevic D, Labat I, Drmanac R, Crkvenjakov R (1991) Proc Natl Acad Sci USA 88:10089CrossRefGoogle Scholar
  33. 33.
    Uhlenbeck OC, Martin FN, Doty P (1971) J Mol Biol 57:217CrossRefGoogle Scholar
  34. 34.
    Doel MT, Smith M (1973) FEBS Lett 34:99CrossRefGoogle Scholar
  35. 35.
    Dodgson JB, Wells RD (1977) Biochemistry 16:2367CrossRefGoogle Scholar
  36. 36.
    Allawi HT, SantaLucia J Jr (1998) Biochemistry 37:2170CrossRefGoogle Scholar
  37. 37.
    Allawi HT, SantaLucia J Jr (1998) Nucleic Acids Res 26:2694CrossRefGoogle Scholar
  38. 38.
    Guo Z, Liu Q, Smith LM (1997) Nat Biotechnol 15:331CrossRefGoogle Scholar
  39. 39.
    Drmanac R, Strezoska Z, Labat I, Drmanac S, Crkvenjakov R (1990) DNA Cell Biol 9:527CrossRefGoogle Scholar
  40. 40.
    Wetmur JG (1991) Crit Rev Biochem Mol Biol 26:227CrossRefGoogle Scholar
  41. 41.
    Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Proc Natl Acad Sci USA 83:3746CrossRefGoogle Scholar
  42. 42.
    Sugimoto N, Nakano S, Yoreyama M, Hanada K (1996) Nucleic Acids Res 24:4501CrossRefGoogle Scholar
  43. 43.
    Wood WI et al. (1985) Proc Natl Acad Sci USA 82:1585CrossRefGoogle Scholar
  44. 44.
    Berger M, Wu Y, Ogawa AK, McMinn DL, Schultz PG, Romesberg FE (2000) Nucleic Acids Res 28:2911CrossRefGoogle Scholar
  45. 45.
    Seela F, Debelak H (2000) Nucleic Acids Res 28:3224CrossRefGoogle Scholar
  46. 46.
    Fotin A, Drobyshev A, Proudnikov D, Perov A, Mirzabekov A (1998) Nucleic Acids Res 26:1515CrossRefGoogle Scholar
  47. 47.
    Weiler J, Gausepohl H, Hauser N, Jensen ON, Hoheisel JD (1997) Nucleic Acids Res 25:2792CrossRefGoogle Scholar
  48. 48.
    Doty P, Boedtker H, Fresco JR, Haselkorn R, Litt M (1959) Proc Natl Acad Sci USA 482Google Scholar
  49. 49.
    Mir KU, Southern EM (1999) Nat Biotechnol 17:788CrossRefGoogle Scholar
  50. 50.
    Drmanac R (1993) U.S. Patent Application published as PCT/US94/10945Google Scholar
  51. 51.
    Drmanac R, Crkvenjakov R (1990) Scientia Yugoslavica, 16:99Google Scholar
  52. 52.
    Michael KL, Taylor LC, Schultz SL, Walt DR (1998) 70:1242Google Scholar
  53. 53.
    Gisendorf BAJ, Vet JAM, Tyagi S, Mensink EJMG, Trijbels FJM, Blom HJ (1998) Clin Chem 44:482Google Scholar
  54. 54.
    Chen X, Livak K, Kwok PY (1998) Genome Res 8:549Google Scholar
  55. 55.
    Drmanac S, Stravropoulos NA, Labat I, Vonau J, Hauser B, Soares MB, Dramanac R (1996) Genomics 37:29CrossRefGoogle Scholar
  56. 56.
    Milosavljevic A, Zeremski M, Strezoska Z, Grujic D, Dyanov H, Batus S, Salbego D, Paunesku T, Soares MB, Crkvenjakov R (1996) Genome Res 6:132CrossRefGoogle Scholar
  57. 57.
    Meier ES, Lange J, Gerst H, Herwig R, Schmitt A, Freund J, Elge T, Moss R, Herrmann B, Lehrach H (1998) Nucleic Acids Res 26:2216CrossRefGoogle Scholar
  58. 58.
    Drmanac R, Drmanac S (1999) Methods Enzymol 303:165CrossRefGoogle Scholar
  59. 59.
    Drmanac S, Heilbron DC, Pullinger CR, Jafari M, Gretzen D, Ukrainczyk T, Cho MH, Frost PH, Siradze K, Drmanac RT, Kane JR and Malloy MJ (2001) Journal of Cardiovascular Pharmacology and Therapeutics 6(1):47CrossRefGoogle Scholar
  60. 60.
    Ekins R, Chu FW (1999) Trends Biotechnol 17:217CrossRefGoogle Scholar
  61. 61.
    Beier M, Hoheisel JD (1999) 27:1970Google Scholar
  62. 62.
    Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Science 251:767CrossRefGoogle Scholar
  63. 63.
    Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Nat Biotechnol 17:974CrossRefGoogle Scholar
  64. 64.
    Lu ZH, Zhao YJ, He NY, Sun X (2000) Intl Forum on Biochip Technologies Beijing, ChinaGoogle Scholar
  65. 65.
    Southern EM, Maskos U, Elder JK (1992) Genomics, 13, 1008CrossRefGoogle Scholar
  66. 66.
    Yershov G, Barsky V, Belgovskiy A, Krillov E, Kreindlin E, Ivanov I, Parinov S, Guschin D, Drobyshev A, Dubiley S, Mirzabekov A (1996) Proc Natl Acad Sci 93:4913CrossRefGoogle Scholar
  67. 67.
    Proudnikov D, Kirillov E, Chumakov K, Donlon J, Rezapkin G, Mirzabekov A (2000) Biologicals 28:57CrossRefGoogle Scholar
  68. 68.
    Gunderson KL, Huang XC, Morris MS, Lipshutz RJ, Lockhart DJ, Chee MS (1998) Genome Res 8:1142Google Scholar
  69. 69.
    Broude NE, Sano T, Smith CL, Cantor CR (1994) Proc Natl Acad Sci USA 91:3072CrossRefGoogle Scholar
  70. 70.
    Lockhart DJ, Dong H, Byrne MT, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Nat Biotechnol 14:1675CrossRefGoogle Scholar
  71. 71.
    Wang DG, Fan JB, Siao C, Berno A, Yang P, Sapolsky R, Ghanour, G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglu T, Hubell E, Robinson E, Mittman M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T, Lipshutz R, Chee M, Lander E, (1998) Science 280:1077CrossRefGoogle Scholar
  72. 72.
    Hacia JG, Brody LC, Chee MS, Fodor SPA, Collins FS (1996) Nat Genet 14:441CrossRefGoogle Scholar
  73. 73.
    Nikiforov TT, Rendle RB, Goelet P, Rogers YH, Kotewicz ML, Anderson S, Trainor GL, Knapp MR (1994) Nucleic Acids Res 22:4167CrossRefGoogle Scholar
  74. 74.
    Canard B, Sarfati RS (1994) Gene 148:1CrossRefGoogle Scholar
  75. 75.
    Drmanac R, Drmanac S (2001) Sequencing by hybridization arrays. In: Rampal J (ed) Methods in molecular biology. DNA Arrays: Methods and Protocols Humana Press, Totowa, NJGoogle Scholar
  76. 76.
    Drmanac R, Drmanac S (2001) DNA sequencing by hybridization with arrays of samples or probes. In: Rampal J (ed) Methods in molecular biology. DNA Arrays: Methods and Protocols Humana Press, Totowa, NJ, 170:173Google Scholar
  77. 77.
    Drmanac S et al. (in preparation)Google Scholar
  78. 78.
    Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM (1994) 22:5456Google Scholar
  79. 79.
    Graber JH, Smith CL, Cantor CR (1999) Genet Anal 14:215Google Scholar
  80. 80.
    Drmanac R (1998) US Patent application published as WO 99/60170Google Scholar
  81. 81.
    Drmanac R (1999) US Patent application published as WO 00/56937Google Scholar
  82. 82.
    Nielsen PE, Egholm M, Berg RH and Buchardt O (1991) Science 254:1497CrossRefGoogle Scholar
  83. 83.
    Nielsen PE, Egholm M, Buchardt O (1994) Bioconjug Chem 5:3CrossRefGoogle Scholar
  84. 84.
    Wahlestedt C et al (2000) Proc Natl Acad Sci 97:5633CrossRefGoogle Scholar
  85. 85.
    Kutyavin IV et al. (2000) Nucleic Acids Res 28:655CrossRefGoogle Scholar
  86. 86.
    Radtkey R et al. (2000) Nucleic Acids Res 28Google Scholar
  87. 87.
    Lu AL, Hsu IC (1992) Genomics 14:249CrossRefGoogle Scholar
  88. 88.
    Lishanski et al. (1994) Proc Natl Acad Sci USA 91:2674CrossRefGoogle Scholar
  89. 89.
    Dianzani I, Camaschella C, Saglio G, Forrest SM, Ramus S, Cotton RG (1991) Genomics 11:48CrossRefGoogle Scholar
  90. 90.
    Housby JN, Southern EM (1998) Nucleic Acids Res 26:4259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Radoje Drmanac
    • 1
  • Snezana Drmanac
    • 1
  • Gloria Chui
    • 1
  • Robert Diaz
    • 1
  • Aaron Hou
    • 1
  • Hui Jin
    • 1
  • Paul Jin
    • 1
  • Sunhee Kwon
    • 1
  • Scott Lacy
    • 1
  • Bill Moeur
    • 1
  • Jay Shafto
    • 1
  • Don Swanson
    • 1
  • Tatjana Ukrainczyk
    • 1
  • Chongjun Xu
    • 1
  • Deane Little
    • 1
  1. 1.Callida GenomicsSunnyvaleUSA

Personalised recommendations