Constructive Geometric Constraint Solving: A New Application of Genetic Algorithms

  • R. Joan-Arinyo
  • M.V. Luzón
  • A. Soto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2439)


Geometric problems de.ned by constraints have an exponential number of solution instances in the number of geometric elements involved. Generally, the user is only interested in one instance such that besides fulfilling the geometric constraints, exhibits some addicional properties. Selecting a solution instance amounts to selecting a given root everytime the geometric constraint solver needs to compute the zeros of a multivaluated function. The problem of selecting a given root is known as the Root Identification Problem. In this paper we present a new technique to solve the root identification problem based on an automatic search in the space of solutions performed by a genetic algorithm. The user specifies the solution of interest by defining a set of additional constraints on the geometric elements which drive the search of the genetic algorithm. Some examples illustrate the performance of the method.


Genetic Algorithm Geometric Constraint Geometric Problem Geometric Element Extra Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd and Oxford University Press, 1997.Google Scholar
  2. 2.
    J. E. Baker. Reducing bias and ine.ciency in the selection algorithm. Proc. Second International Conference on Genetic Algorithms (ICGA’87), pages 14–21, 1987.Google Scholar
  3. 3.
    L.B. Booker, D.B. Fogel, D. Whitley, and P.J. Angeline. Recombination. In T. Bäck, D.B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Computation, chapter C3.3, pages C3.3:1–C3.3:10. Institute of Physics Publishing Ltd and Oxford University Press, 1997.Google Scholar
  4. 4.
    W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. Geometric constraint solver. Computer Aided Design, 27(6):487–501, June 1995.zbMATHCrossRefGoogle Scholar
  5. 5.
    C. Durand. Symbolic and Numerical Techniques for Constraint Solving. PhD thesis, Computer Science, Purdue University, December 1998.Google Scholar
  6. 6.
    A. Eiben, P.-E. Raué, and Zs. Ruttkay. GA-easy and GA-hard constraint satisfaction problems. In M. Meyer, editor, Constraint Processing, LNCS Series 923, pages 267–284. Springer-Verlag, Heidelberg, 1995.Google Scholar
  7. 7.
    C. Essert-Villard, P. Schreck, and J.-F. Dufourd. Skecth-based pruning of a solution space within a formal geometric constraint solver. Artificial Intelligence, 124:139–159, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Fudos and C.M. Hoffmann. A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics, 16(2):179–216, April 1997.CrossRefGoogle Scholar
  9. 9.
    D.E. Goldberg. Genetic Algorithms in Search, Optimization Machine Learning. Addison Wesley, 1989.Google Scholar
  10. 10.
    J.J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, SMC-16(1):122–128, 1986.CrossRefGoogle Scholar
  11. 11.
    R. Joan-Arinyo and N. Mata. A data structure for solving geomegtric cosntraint problems with interval parameters. Technical Report LSI-00-24-R, Department LiSI, Universitat Politècnica de Catalunya, 2000.Google Scholar
  12. 12.
    R. Joan-Arinyo and A. Soto. A correct rule-based geometric constraint solver. Computer & Graphics, 21(5):599–609, 1997.CrossRefGoogle Scholar
  13. 13.
    R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational geometric constraint solving techniques. ACM Transactions on Graphics, 18(1):35–55, January 1999.CrossRefGoogle Scholar
  14. 14.
    G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics, 4(4):331–340, October 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M.V. Luzón. Resolución de Restricciones Geométricas. Selección de la Solución Deseada. PhD thesis, Dept. Informática, Universidad de Vigo, December 2001. Written in Spanish.Google Scholar
  16. 16.
    N. Mata. Solving incidence and tangency constraints in 2D. Technical Report LSI-97-3R, Department LiSI, Universitat Politècnica de Catalunya, 1997.Google Scholar
  17. 17.
    N. Mata. Constructible Geometric Problems with Interval Parameters. PhD thesis, Dept. LiSI, Universitat Politècnica de Catalunya, 2000.Google Scholar
  18. 18.
    Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, 1996.Google Scholar
  19. 19.
    H. Mühlenbein and M. Georges-Schleuter nad O. Krämer. Evolution algorithm in combinatorial optimization. Parallel Computing, 7:65–85, 1988.zbMATHCrossRefGoogle Scholar
  20. 20.
    V. Petridis, S. Kazarlis, and A. Bakirtzis. Varying quality functions in genetic algorithm constrained optimization: The cutting stock and unit commitment problems. IEEE Transactions on Systems, Man and Cybernetics, 28, Part B(5), 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • R. Joan-Arinyo
    • 1
  • M.V. Luzón
    • 2
  • A. Soto
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona
  2. 2.Escuela Superior de Ingeniería InformáticaUniversidad de VigoOurense

Personalised recommendations