Skip to main content

Diversity-Guided Evolutionary Algorithms

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN VII (PPSN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2439))

Included in the following conference series:

Abstract

Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few algorithms have used a measure to guide the search.

The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results on a set of widely used benchmark problems, not only in terms of fitness, but more important: The DGEA saved a substantial amount of fitness evaluations compared to the simple EA, which is a critical factor in many real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T., Fogel, D. B., Michalewicz, Z., and others, (eds.): Handbook on Evolutionary Computation. IOP Publishing Ltd and Oxford University Press, (1997)

    Google Scholar 

  2. Ursem, R. K.: Multinational Evolutionary Algorithms. In: Proceedings of the Congress of Evolutionary Computation (CEC-99), Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A. (eds.), Vol. 3. 1633–1640 (1999)

    Google Scholar 

  3. Thomsen, R., Rickers, P., and Krink, T.: A Religion-Based Spatial Model For Evolutionary Algorithms. In: Parallel Problem Solving from Nature—PPSN VI, Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H. P. (eds.), Vol. 1. 817–826 (2000)

    Google Scholar 

  4. De Jong, K. A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Ann Arbor, MI, (1975). Dissertation Abstracts International 36(10), 5140B, University Microfilms Number 76-9381

    Google Scholar 

  5. Mahfoud, S.: Crowding and preselection revisited. Technical Report 92004, Illinois Genetic Algorithms Laboratory (IlliGAL), (1992)

    Google Scholar 

  6. Goldberg, D. E. and Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function Optimization. In: Genetic Algorithms and their Applications (ICGA’87), Grefenstette, J. J. (ed.), 41–49. Lawrence Erlbaum Associates, Publishers, (1987)

    Google Scholar 

  7. Cobb, H. G. and Grefenstette, J. F.: Genetic Algorithms for Tracking Changing Environments. In: Proceedings of the 5th International Conference on Genetic Algorithms, Forrest, S. (ed.), 523–530 (1993)

    Google Scholar 

  8. Thomsen, R. and Rickers, P.: Introducing Spatial Agent-Based Models and Self-Organised Criticality to Evolutionary Algorithms. Master’s thesis, University of Aarhus, Denmark, (2000)

    Google Scholar 

  9. Greenwood, G. W., Fogel, G. B., and Ciobanu, M.: Emphasizing Extinction in Evolutionary Programming. In: Proceedings of the Congress of Evolutionary Computation, Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A. (eds.), Vol. 1. 666–671 (1999)

    Google Scholar 

  10. Krink, T., Thomsen, R., and Rickers, P.: Applying Self-Organised Criticality to Evolutionary Algorithms. In: Parallel Problem Solving from Nature—PPSN VI, Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H. P. (eds.), Vol. 1. 375–384 (2000)

    Google Scholar 

  11. Shimodaira, H.: A Diversity Control Oriented Genetic Algorithm (DCGA): Development and Experimental Results. In: Proceedings of the Genetic and Evolutionary Computation Conference, Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Vol. 1. 603–611 (1999)

    Google Scholar 

  12. Oppacher, F. and Wineberg, M.: The Shifting Balance Genetic Algorithm: Improving the GA in a Dynamic Environment. In: Proceedings of the Genetic and Evolutionary Computation Conference, Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Vol. 1. 504–510 (1999)

    Google Scholar 

  13. Tsutsui, S., Fujimoto, Y., and Ghosh, A.: Forking Genetic Algorithms: GAs with Search Space Division Schemes. Evolutionary Computation 5, 61–80 (1997)

    Article  Google Scholar 

  14. Bak, P.: How Nature Works. Copernicus, Springer-Verlag, New York, 1st edition, (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ursem, R.K. (2002). Diversity-Guided Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-45712-7_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44139-7

  • Online ISBN: 978-3-540-45712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics