Abstract
Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few algorithms have used a measure to guide the search.
The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results on a set of widely used benchmark problems, not only in terms of fitness, but more important: The DGEA saved a substantial amount of fitness evaluations compared to the simple EA, which is a critical factor in many real-world applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., Fogel, D. B., Michalewicz, Z., and others, (eds.): Handbook on Evolutionary Computation. IOP Publishing Ltd and Oxford University Press, (1997)
Ursem, R. K.: Multinational Evolutionary Algorithms. In: Proceedings of the Congress of Evolutionary Computation (CEC-99), Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A. (eds.), Vol. 3. 1633–1640 (1999)
Thomsen, R., Rickers, P., and Krink, T.: A Religion-Based Spatial Model For Evolutionary Algorithms. In: Parallel Problem Solving from Nature—PPSN VI, Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H. P. (eds.), Vol. 1. 817–826 (2000)
De Jong, K. A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Ann Arbor, MI, (1975). Dissertation Abstracts International 36(10), 5140B, University Microfilms Number 76-9381
Mahfoud, S.: Crowding and preselection revisited. Technical Report 92004, Illinois Genetic Algorithms Laboratory (IlliGAL), (1992)
Goldberg, D. E. and Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function Optimization. In: Genetic Algorithms and their Applications (ICGA’87), Grefenstette, J. J. (ed.), 41–49. Lawrence Erlbaum Associates, Publishers, (1987)
Cobb, H. G. and Grefenstette, J. F.: Genetic Algorithms for Tracking Changing Environments. In: Proceedings of the 5th International Conference on Genetic Algorithms, Forrest, S. (ed.), 523–530 (1993)
Thomsen, R. and Rickers, P.: Introducing Spatial Agent-Based Models and Self-Organised Criticality to Evolutionary Algorithms. Master’s thesis, University of Aarhus, Denmark, (2000)
Greenwood, G. W., Fogel, G. B., and Ciobanu, M.: Emphasizing Extinction in Evolutionary Programming. In: Proceedings of the Congress of Evolutionary Computation, Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A. (eds.), Vol. 1. 666–671 (1999)
Krink, T., Thomsen, R., and Rickers, P.: Applying Self-Organised Criticality to Evolutionary Algorithms. In: Parallel Problem Solving from Nature—PPSN VI, Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H. P. (eds.), Vol. 1. 375–384 (2000)
Shimodaira, H.: A Diversity Control Oriented Genetic Algorithm (DCGA): Development and Experimental Results. In: Proceedings of the Genetic and Evolutionary Computation Conference, Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Vol. 1. 603–611 (1999)
Oppacher, F. and Wineberg, M.: The Shifting Balance Genetic Algorithm: Improving the GA in a Dynamic Environment. In: Proceedings of the Genetic and Evolutionary Computation Conference, Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Vol. 1. 504–510 (1999)
Tsutsui, S., Fujimoto, Y., and Ghosh, A.: Forking Genetic Algorithms: GAs with Search Space Division Schemes. Evolutionary Computation 5, 61–80 (1997)
Bak, P.: How Nature Works. Copernicus, Springer-Verlag, New York, 1st edition, (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ursem, R.K. (2002). Diversity-Guided Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_45
Download citation
DOI: https://doi.org/10.1007/3-540-45712-7_45
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44139-7
Online ISBN: 978-3-540-45712-1
eBook Packages: Springer Book Archive