Abstract
In this paper, we investigate the recent paradigm for group signatures proposed by Rivest et al. at Asiacrypt ’01.We first improve on their ring signature paradigm by showing that it holds under a strictly weaker assumption, namely the random oracle model rather than the ideal cipher. Then we provide extensions to make ring signatures suitable in practical situations, such as threshold schemes or ad-hoc groups. Finally we propose an efficient scheme for threshold scenarios based on a combinatorial method and provably secure in the random oracle model.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
N. Alon, R. Yuster and U. Zwick. Color Coding. J. of ACM, (42):844–856.
N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks. Expanded version of a talk given at the Nordsec’ 99 Workshop.
G. Ateniese, J. Camenisch, M. Joye, G. Tsudik. A practical and provably secure coalition-resistant group signature scheme. In Crypto’ 00, LNCS 1880, pp. 255–270.
O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Practical multi-candidate election system. In PODC’ 01. ACM, 2001.
M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In Eurocrypt’ 00, LNCS 1807, pp. 139–155.
S. Brands. Untraceable o.-line cash in wallets with observers. In Crypto’ 93, LNCS 773, pp. 302–318.
E. Bresson, J. Stern and M. Szydlo. Threshold Ring Signatures for Ad-Hoc Groups. Full version of this paper, http://www.di.ens.fr/~bresson.
J. Camenish and M. Michels. Separability and efficiency for generic group signature schemes. In Crypto’ 99, LNCS 1666, pp. 106–121.
J. Camenish and M. Stadler. Efficient group signatures schemes for large groups. In Crypto’ 97, LNCS 1294, pp. 410–424.
D. Chaum and T. Pedersen. Wallet databases with observers. In Crypto’ 92, LNCS 740, pp. 89–105.
D. Chaum, E. van Heyst. Group signatures. Eurocrypt’ 91, LNCS 547, pp. 257–265.
L. Chen and T. Pedersen. New group signature schemes. In Eurocrypt’ 94, LNCS 950, pp. 171–181.
R. Cramer, I. Damg°ard, B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In Crypto’ 94, LNCS 839, pp. 174–187.
R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secretballot elections with linear work. In Eurocrypt’ 96, LNCS 1070, pp. 72–83.
A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On monotone formula closure of SZK. In FOCS’ 94, pp. 454–465.
T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Crypto’ 84, LNCS 196, pp. 10–18.
D. Goldschlag and S. Stubblebine. Publicly verifiable lotteries: Applications of delaying functions. In Financial Crypto’ 98, LNCS 1465, pp. 214–226.
Z. Haas and L. Zhou Securing Ad-Hoc Networks. In IEEE Networks, 13(6), 1999.
S. Kim, S. Park, and D. Won. Convertible group signatures. In Asiacrypt’ 96, LNCS 1163, pp. 311–321.
S. Kim, S. Park, and D. Won. Group signatures for hierarchical multigroups. In ISW’ 97, LNCS 1396, pp. 273–281.
E. Kushilevitz and T. Rabin. Fair e-lotteries and e-casinos. In RSA Conference 2001, LNCS 2020, pp. 100–109.
C. Perkins. Ad-hoc networking. Addison Wesley, 2001.
H. Petersen. How to convert any digital signature scheme into a group signature scheme. In Security Protocols’ 97, LNCS 1361, pp. 67–78.
D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J. of Cryptology, 13(3):361–396, Aug. 2000.
R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Asiacrypt’ 01, LNCS 2248, pp. 552–565.
R. Rivest, A. Shamir, Y. Tauman. How to leak a secret. Private Com., Oct. 2001.
R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Com. of the ACM, 21(2):120–126, Feb. 1978.
A. Shamir. How to share a secret. In Com. of the ACM, 22(11):612–613, 1979.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bresson, E., Stern, J., Szydlo, M. (2002). Threshold Ring Signatures and Applications to Ad-hoc Groups. In: Yung, M. (eds) Advances in Cryptology — CRYPTO 2002. CRYPTO 2002. Lecture Notes in Computer Science, vol 2442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45708-9_30
Download citation
DOI: https://doi.org/10.1007/3-540-45708-9_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44050-5
Online ISBN: 978-3-540-45708-4
eBook Packages: Springer Book Archive