Skip to main content

Red queen dynamics and the evolution of translational redundancy and degeneracy

  • Chapter
  • First Online:
  • 1063 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 585))

Abstract

We explore adaptive theories for the diversity of protein translation based on the genetic code viewed as a primitive immune system. Immunity is acquired through a genetic mechanism of non-recognition of parasite genomes. Modifying the set of codons bound by tRNA anticodon molecules or changing the specificity of binding, reduces the replication rate of translational parasites such as viruses. Changing the binding specifity can be thought of in terms of varying degrees of redundancy and degeneracy. Redundancy in the genetic code is commonly attributed to using a four base triplet mechanism to encode the 20 amino acids. This has been referred to as synonym redundancy. There are however at least a further two forms of redundancy associated with the code and one source of degeneracy. A first form of redundancy arises from decoding all 61 possible sense codons using fewer than 61 anticodons. Such a strategy involves reduced binding specificity. A second source of redundancy is present in the multiplicity of copies of each unique tRNA (tRNA copy redundancy). Degeneracy arises when different anticodons become associated with a single amino acid to increase specificity. Variation in these strategies across tax a ensures that the translational machinery is diverse whereas the code remains approximately constant.We construct a red queen theory for translational diversity: a theory in which host translational strategies - as defined by the degree of redundancy or degeneracy of anticodons— are constantly shifting through time to evade parasitism but where neither parasite nor host gains a systematic advantage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haig, D., Hurst, L. D. A quantitative measure of error minimization in the genetic code. J Mol Evol 33, 412–7 (1991)

    Article  PubMed  CAS  Google Scholar 

  2. Freeland, S. J., Hurst, L. D. 1998. The genetic code is one in a million. J Mol Evol 47, 238–48 (1998)

    Article  PubMed  CAS  Google Scholar 

  3. Knight, R. D., Freeland, S. J., Landweber, L. F. Selection, history and chemistry: the three faces of the genetic code [see comments]. Trends Biochem Sci 24, 241–7 (1999)

    Article  PubMed  CAS  Google Scholar 

  4. Bulmer, M. The selection-mutation-drift theory of synonymous codon usage. Genetics 129, 897–907 (1991)

    PubMed  CAS  Google Scholar 

  5. Dong, H., Nilsson, L., Kurland, C. G. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177, 1497–504 (1995)

    PubMed  CAS  Google Scholar 

  6. Sharp, P. M., Stenico, M., Peden, J. F., Lloyd, A. T. Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans 21, 835–41 (1993)

    PubMed  CAS  Google Scholar 

  7. Bennetzen, J. L., Hall, B. D. Codon selection in yeast. J Biol Chem 257, 3026–31 (1982)

    PubMed  CAS  Google Scholar 

  8. Kurland, C. G. Codon bias and gene expression. FEBS Lett 285, 165–9 (1991)

    Article  PubMed  CAS  Google Scholar 

  9. Lammertyn, E., Van Mellaert, L., Bijnens, A. P., Joris, B., Anne, J. Codon adjustment to maximize heterologous gene expression in Streptomyces lividans can lead to decreased mRNA stability and protein yield. Mol Gen Genet 250, 223–9 (1996)

    PubMed  CAS  Google Scholar 

  10. Frank, S. A. Recognition and polymorphism in host-parasite genetics. Philos Trans R Soc Lond B Biol Sci 346, 283–93 (1994)

    Article  PubMed  CAS  Google Scholar 

  11. Hamilton, W.D., Axelrod, R. Tanese, R. Sexual selection as an adaptation to resist parasites (a review). Proc, Natl. Acad. Sci. USA 87, 3566–3573 (1990)

    Article  CAS  Google Scholar 

  12. Xia, X. How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149,37–44 (1998)

    PubMed  CAS  Google Scholar 

  13. Metz J.A.J., Geritz S.A.H., Meszéna G., Jacobs F.J.A., van Heerwaarden JS: Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction. IIASA WorkingP aper WP-95-099. In: van Strien SJ, Verduyn Lunel SM (eds.) Stochastic and Spatial Structures of Dynamical Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen), North Holland, Amsterdam, pp.183–231 (1996).

    Google Scholar 

  14. Mylius, S.D., Diekmann, O. On evolutionarily stable life histories, optimization and the need to be specific about density dependence Oikos 74 218–224 (1995)

    Article  Google Scholar 

  15. Dieckmann U, Law R: The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes. Journal of Mathematical Biology 34, 579–612. (1996)

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y., Frazer, I. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol 73, 4972–82 (1999)

    PubMed  CAS  Google Scholar 

  17. Kruger, M. K., Pederson, S., Hagervall, T. G., Soreson, M. A. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codon in vivo. J. Mol. Evol 284, 621–631 (1998)

    CAS  Google Scholar 

  18. Carlson, B. A., Kwon, S. Y., Chamorro, M., Oroszlan, S., Hatfield, D. L., Lee, B. J. Transfer RNA modification status influences retroviral ribosomal frameshifting. Virology 255, 2–8 (1999)

    Article  PubMed  CAS  Google Scholar 

  19. Matsuyama, S., Ueda, T., Crain, P. F., McCloskey, J. A., Watanabe, K. A novel wobble rule found in star.sh mitochondria. Presence of 7-methylguanosine at the anticodon wobble position expands decodingcapabilit y of tRNA. J Biol Chem 273, 3363–8 (1998)

    Article  PubMed  CAS  Google Scholar 

  20. Morris, R. C., Brown, K. G., Elliott, M. S. The effect of queuosine on tRNA structure and function. J Biomol Struct Dyn 16, 757–74 (1999)

    PubMed  CAS  Google Scholar 

  21. Sharp, P. M., Averof, M., Lloyd, A. T., Matassi, G., Peden, J. F. DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci 349, 241–7 (1995)

    Article  PubMed  CAS  Google Scholar 

  22. Karlin, S., Mrazek, J. What drives codon choices in human genes? J Mol Biol 262, 459–72 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. Percudani, R., Pavesi, A., Ottonello, S. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268, 322–30 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. Fitch, W. M., Bush, R. M., Bender, C. A., Cox, N. J. Longterm trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 94, 7712–8 (1997)

    Article  PubMed  CAS  Google Scholar 

  25. Wright, F. The ‘effective number of codons’ used in a gene. Gene 87, 23–9 (1990)

    Article  PubMed  CAS  Google Scholar 

  26. Wright, F. Defect in the modification of anticodon wobble base of mutant mitochondrial tRNAs in MELAS mitochondrial encephalomyopathy. 87, 23–9 (1990)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krakauer, D.C., Jansen, V.A., Nowak, M. (2002). Red queen dynamics and the evolution of translational redundancy and degeneracy. In: Lässig, M., Valleriani, A. (eds) Biological Evolution and Statistical Physics. Lecture Notes in Physics, vol 585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45692-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45692-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43188-6

  • Online ISBN: 978-3-540-45692-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics