Small Convex Quadrangulations of Point Sets

  • David Bremner
  • Ferran Hurtado
  • Suneeta Ramaswami
  • Vera Sacristán
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2223)


In this paper, we give upper and lower bounds on the number of Steiner points required to construct a strictly convex quadrilateral mesh for a planar point set. In particular, we show that 3⌊n∣2⌋ internal Steiner points are always sufficient for a convex quadrangulation of n points in the plane. Furthermore, for any given n ≥ 4, there are point sets for which \( \left[ {\tfrac{{n - 3}} {2}} \right] - 1 \) Steiner points are necessary for a convex quadrangulation.


Convex Hull Steiner Point Simple Polygon Quadrilateral Mesh Polygon Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Allman. A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int. J. Num. Methods Eng., 26:717–730, 1988.CrossRefzbMATHGoogle Scholar
  2. 2.
    E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian triangulations for fast rendering. In ESA’94, LNCS 855, pages 36–47, Utrecht, September 1994.Google Scholar
  3. 3.
    S.E Benzley, E. Perry, K. Merkley, B. Clark, and K. Sjaardema. A comparison of all-hexahedral and all-tetrahedral finite element meshes for elastic and elastoplastic analysis. In 4th Int. Meshing Roundtable, pages 179–191, 1995.Google Scholar
  4. 4.
    M. Bern and D. Eppstein. Quadrilateral meshing by circle packing. In 6th Int. Meshing Roundtable, pages 7–19, 1997.Google Scholar
  5. 5.
    M. Bern, S. A. Mitchell, and J. Ruppert. Linear-size nonobtuse triangulation of polygons. Disc. Comput. Geom., 14:411–428, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Bose, S. Ramaswami, A. Turki, and G. Toussaint. Experimental comparison of quadrangulation algorithms for sets of points. In 12th Euro. Workshop Comp. Geom., Münster, Germany, 1996.Google Scholar
  7. 7.
    P. Bose and G. Toussaint. Characterizing and efficiently computing quadrangulations of planar point sets. Comp. Aided Geom. Design, 14:763–785, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Edelsbrunner, J. O’Rourke, and E. Welzl. Stationing guards in rectilinear art galleries. Comp. Vis. Graphics Image Proc., 27:167–176, 1984.Google Scholar
  9. 9.
    D. Eppstein. Linear complexity hexahedral mesh generation. In Proc. 12th ACM Symp. Comp. Geom., pages 58–67, 1996.Google Scholar
  10. 10.
    H. Everett, W. Lenhart, M. Overmars, T. Shermer, and J. Urrutia. Strictly convex quadrilateralizations of polygons. In Proc. 4th Canad. Conf. Comput. Geom., pages 77–82, St. Johns, Newfoundland, 1992.Google Scholar
  11. 11.
    T. Fevens, H. Meijer, and D. Rappaport. Minimum weight convex quadrilateralization of a constrained point set. In 2nd CGC Workshop Comp. Geom., Durham, NC, USA, 1997.Google Scholar
  12. 12.
    B. P. Johnston, J. M. Sullivan, and A. Kwasnik. Automatic conversion of triangular finite meshes to quadrilateral elements. Int. J. Num. Methods Eng., 31(1):67–84, 1991.CrossRefzbMATHGoogle Scholar
  13. 13.
    J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries require fewer watchmen. SIAM J. Alg. Disc. Methods, 4(2):194–206, June 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Lubiw. Decomposing polygonal regions into convex quadrilaterals. In Proc. 1st ACM Symp. Comp. Geom., pages 97–106, 1985.Google Scholar
  15. 15.
    Bern M. and D. Eppstein. Polynomial-size nonobtuse triangulation of polygons. Int. J. Comp. Geom. App., 2:241–255, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Mitchell. A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed volume. In 5th MSI Workshop Comp. Geom., 1995. 624Google Scholar
  17. 17.
    S. Mitchell. Hexahedral mesh generation via the dual. In Proc. 11th ACM Symp. Comp. Geom., pages C4–C5, 1995.Google Scholar
  18. 18.
    M. Müller-Hannemann and K. Weihe. Quadrangular refinements of polygons with an application to finite-element meshes. In Proc. 13th ACM Symp. Comp. Geom., 1997.Google Scholar
  19. 19.
    S. Ramaswami, P. Ramos, and G. Toussaint. Converting triangulations to quadrangulations. Comput. Geom., 9:257–276, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J. R. Sack. An O(n log n) algorithm for decomposing simple rectilinear polygons into convex quadrilaterals. In Proc. 20th Allerton Conf., pages 64–75, October 1982.Google Scholar
  21. 21.
    E. Schönhardt. Über die zerlegung von dreieckspolyedern in tetraeder. Math. Annalen, 98:309–312, 1928.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    G. Toussaint. Quadrangulations of planar sets. In Workshop Alg. Data Struct., LNCS, pages 218–227. Springer-Verlag, August 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • David Bremner
    • 1
  • Ferran Hurtado
    • 2
  • Suneeta Ramaswami
    • 3
  • Vera Sacristán
    • 2
  1. 1.Faculty of Computer ScienceUniversity of New BrunswickGermany
  2. 2.Dep. Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaGermany
  3. 3.Dep. Computer ScienceRutgers UniversityCamdenUSA

Personalised recommendations