Skip to main content

21 Debris Flows and Related Phenomena

  • Chapter
  • First Online:
Geomorphological Fluid Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 582))

Abstract

Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in European countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.M. Scott: ‘Origins, behavior, and sedimentology of lahars and lahars-runout flows in the Toutle-Cowlitz river system’. Report 1447-A (U.S. Geological Survey, 1988)

    Google Scholar 

  2. B. Voight: J. Volcan. Geotherm. Res. 44, 349 (1990)

    Article  ADS  Google Scholar 

  3. P. Coussot: Mud Flow Rheology and Dynamics (Balkema, Rotterdam 1997)

    Google Scholar 

  4. D. Brunsden, D.B. Prior: Slope Instability (John Wiley & Sons, New York 1984)

    Google Scholar 

  5. M. Zimmermann, P. Mani, P. Gamma, P. Gsteiger, O. Heiniger, G. Hunizker: Murganggefahr und Klimaänderung— ein GIS-basierter Ansatz (VDF, Zürich 1997)

    Google Scholar 

  6. P. Coussot, M. Meunier: Earth Sci. Rev. 3-4, 209 (1996)

    Article  ADS  Google Scholar 

  7. R.M. Iverson: Rev. Geophys. 35, 245 (1997)

    Article  ADS  Google Scholar 

  8. T. Takahashi: Ann. Rev. Fluid Mech. 13, 57 (1981)

    Article  ADS  Google Scholar 

  9. V. Koulinski: Étude de la formation d’un lit torrentiel par confrontation d’essais sur modèle réduit et d’observations de terrain. Ph.D. Thesis, University Joseph Fourier, Grenoble (1993)

    Google Scholar 

  10. D. Rickenmann: J. Hydraul. Eng. ASCE 117, 1419 (1992)

    Article  Google Scholar 

  11. G.M. Smart, M.N.R. Jaeggi: Sedimenttransport in steilen Gerinnen. Mitteilungen 64 (Versuchanstalt für Wasserbau, Hydrologie und Glaziologie, Zürich 1983)

    Google Scholar 

  12. C. Tognacca: Beitrag zur Untersuchung der Entstehungsmechanismen von Murgängen. Ph.D. Thesis, Eidgenössischen Technischen Hochschule Zürich, Zürich (1999)

    Google Scholar 

  13. S. Lanzoni: Meccanica di miscugli solido-liquido in regime granulo inerziale. Ph.D.Thesis, University of Padova, Padova (1993)

    Google Scholar 

  14. J.J. Major: Experimental studies of deposition of debris flows: process, characteristics of deposits, and effects of pore-fluid pressure. Ph.D. Thesis, University of Washington, Washington (1996)

    Google Scholar 

  15. A.M. Johnson, J.R. Rodine: ‘Debris flow’. In: Slope Instability, ed. by D. Brundsen, D.B. Prior (John Wiley & Sons, New York 1984) pp. 257–361

    Google Scholar 

  16. P. Coussot, J.-M. Piau: Can. Geotech. J. 32, 263 (1995)

    Article  Google Scholar 

  17. P. Coussot, D. Laigle, M. Arratano, A. Deganutti, L. Marchi: J. Hydraul. Eng. ASCE 124, 865 (1998)

    Article  Google Scholar 

  18. P. Coussot, S. Proust, C. Ancey: J. Non-Newtonian Fluid Mech. 66, 55 (1996)

    Article  Google Scholar 

  19. J.J. Major, T.C. Pierson: Water Resou. Res. 28, 841 (1992)

    Article  ADS  Google Scholar 

  20. C. J. Phillips, T.R.H. Davies: Geomorphology 4, 101 (1991)

    Article  ADS  Google Scholar 

  21. Z. Wan, Z. Wang: Hypercontrated flow (Balkema, Rotterdam 1994)

    Google Scholar 

  22. P. Coussot: Les laves torrentielles, connaissances pratiques à l’usage du praticien (in French) (Cemagref, Antony 1996)

    Google Scholar 

  23. T. Takahashi: Debris flow (Balkema, Rotterdam 1991)

    Google Scholar 

  24. C. Ancey: Rhéologie des écoulements granulaires en cisaillement simple, application aux laves torrentielles granulaires. Ph.D. Thesis, Ecole Centrale de Paris, Paris (1997)

    Google Scholar 

  25. C.-L. Chen: Rev. Eng. Geology 7, 13 (1987)

    Google Scholar 

  26. J.T. Jenkins, E. Askari: ‘Hydraulic theory for a debris flow supported on a collisional shear layer’. In: International Workshop on Floods and Inundations related to Large Earth Movements, Trent 1994, IAHR (IAHR, 1994) pp. 6

    Google Scholar 

  27. C. Ancey, P. Coussot: C. R. Acad. Sci., ser. B 327, 515 (1999)

    ADS  Google Scholar 

  28. D. Rickenmann: Natural Hazards 19, 47 (1999)

    Article  Google Scholar 

  29. D. Rickenmann: Schweizer Ingenieur und Architekt 48, 1104 (1996)

    Google Scholar 

  30. D. Laigle, P. Coussot: J. Hydraul. Eng. ASCE 123, 617 (1997)

    Article  Google Scholar 

  31. C.C. Mei, M. Yuhi: J. Fluid Mech. 431, 135 (2001)

    Article  MATH  ADS  Google Scholar 

  32. B. Hunt: J. Hydraul. Eng. ASCE 110, 1053 (1983)

    Google Scholar 

  33. B. Hunt: J. Hydraul. Eng. ASCE 120, 1350 (1994)

    Article  Google Scholar 

  34. X. Huang, M.H. Garcia: J. Fluid Mech. 374, 305 (1998)

    Article  MATH  ADS  Google Scholar 

  35. X. Huang, M.H. Garcia: J. Hydraul. Eng. ASCE 123, 986 (1997)

    Article  Google Scholar 

  36. J.M. Piau: J. Rheol. 40, 711 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Coussot, C. Ancey: Phys. Rev. E 59, 4445 (1999)

    Article  ADS  Google Scholar 

  38. Z. Zhou, M.J. Solomon, P.J. Scales, D.V. Boger: J. Rheol. 43, 651 (1999)

    Article  ADS  Google Scholar 

  39. C.R. Wildemuth, M.C. Williams: Rheol. Acta 24, 75 (1985)

    Article  Google Scholar 

  40. C.R. Wildemuth, M.C. Williams: Rheol. Acta 23, 627 (1984)

    Article  Google Scholar 

  41. S. Mansoutre, P. Colombet, H. Van Damme: Cement Concrete Res. 29, 1441 (1999)

    Article  Google Scholar 

  42. A.A. Potanin, R. De Rooi, D. Van den Ende, J. Mellema: J. Chem. Phys. 102, 5845 (1995)

    Article  ADS  Google Scholar 

  43. A.A. Potanin, W.B. Russel: Phys. Rev. E 53, 3702 (1996)

    Article  ADS  Google Scholar 

  44. P. Sollich: Phys. Rev. E 58, 738 (1998)

    Article  ADS  Google Scholar 

  45. P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates: Phys. Rev. Lett. 78, 2020 (1997)

    Article  ADS  Google Scholar 

  46. M.Z. Sengun, R.F. Probstein: Rheol. Acta 28, 382 (1989)

    Article  Google Scholar 

  47. M.Z. Sengun, R.F. Probstein: Rheol. Acta 28, 394 (1989)

    Article  Google Scholar 

  48. R.F. Probstein, M.Z. Sengun, T.-C. Tseng: J. Rheol. 38, 811 (1994)

    Article  ADS  Google Scholar 

  49. C. Ancey, H. Jorrot: J. Rheol. 45, 297 (2001)

    Article  ADS  Google Scholar 

  50. C. Ancey, P. Coussot, P. Evesque: J. Rheol. 43, 1673 (1999)

    Article  ADS  Google Scholar 

  51. A. Acrivos, R. Mauri, X. Fan: Int. J. Multiphase Flow 19, 797 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ancey, C. (2001). 21 Debris Flows and Related Phenomena. In: Balmforth, N.J., Provenzale, A. (eds) Geomorphological Fluid Mechanics. Lecture Notes in Physics, vol 582. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45670-8_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45670-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42968-5

  • Online ISBN: 978-3-540-45670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics