Variable Structure Systems with Terminal Sliding Modes

  • Xinghuo Yu
  • Zhihong Man
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 274)


In this chapter, we discuss recent developments in a special topic of Variable Structure Systems, namely, the terminal sliding mode control. Dynamic properties of the terminal sliding mode control systems are explored and their applications in single input single output (SISO) systems and multi input multi output (MIMO) systems are presented. Further improvements of the particular sliding mode control strategy are suggested.


Slide Mode Control Sliding Mode Single Input Single Output Single Input Single Output Terminal Slide Mode Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartolini, G., Ferrara, A., Levant, A., and Usai, E. (1999). On second order sliding mode controllers. Variable Structure Systems, Sliding Mode and Nonlinear Control. K. D. Young and U. Ozguner (Eds.), Lecture Notes in Control and Information Sciences, Springer Verlag, 247, 329–350.Google Scholar
  2. 2.
    Bhat, S. P. and Berstein D. S. (1997). Finite time stability of homogeneous systems. Proc. American Control Conference, 2513–1514.Google Scholar
  3. 3.
    Feng, Y., Han F., Yu, X., Stonier, D. and Man Z. (2000). Tracking precision analysis of terminal sliding mode control systems with saturation functions. Advances in Variable Structure Systems: Analysis, Integration and Applications, Yu X. and Xu. J.-X. (eds), pp. 325–334, World Scientific, Singapore.Google Scholar
  4. 4.
    Feng, Y., Yu, X. and Man, Z. (2001). Non singular terminal sliding mode control and its applications to robot manipulators. Proceedings of 2001 IEEE International Symposium on Circuits and Systems, III, pp. 545–548, Sydney May 2001.Google Scholar
  5. 5.
    Fuller, A. T. (1973). Proof of the time optimality of a predictive control strategy for systems of higher order. International Journal of Control, 18(6), 1121–1127.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gulko, F. B., Ya Kogan, B., Ya. Lerner, A., Mikhailov, N. N. and Bovoseltseva, Zh. A. (1964). A prediction method using high speed analog computers and its applications. Automation and Remote Control, 25(6), 803–813.Google Scholar
  7. 7.
    Haimo, V. T. (1986). Finite time controllers. SIAM Journal of Control and Optimization, 24. 760–770.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Isidori, A. (1989). Nonlinear Control Systems. Springer-Verlag, Berlin, Heidelberg.zbMATHGoogle Scholar
  9. 9.
    Jefferey, A. (1994). Table of Integrals, Series and Products. Academic Press, Inc., 5th Edition.Google Scholar
  10. 10.
    Lewis, F. L., Abdallah, C. T. and Dawson, D. M. (1993). Control of Robot Manipulators. Macmillan Publishing.Google Scholar
  11. 11.
    Levant, A. (1993). Sliding order and sliding accuracy in sliidng mode control. International Journal of Control, 58, 1247–1263.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Man, Z., Paplinski, A. P. and Wu, H. R. (1994). A robust MIMO terminal sliding mode control for rigid robotic manipulators. IEEE Transactions on Automat. Control, 39, 2464–2469.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Man, Z. and Yu, X. (1997). Terminal sliding mode Control of MIMO systems. IEEE Transactions on Circuits and Systems — Part I, 44, 1065–1070.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Man, Z., O’Day, M. and Yu, X. (1999). A robust adaptive terminal sliding mode control for rigid robotic systems. J. Intelligent & Robotic Systems, 24, 23–41.zbMATHCrossRefGoogle Scholar
  15. 15.
    Man, Z. and Yu, X. (1997). Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics. JSME International Journal, 40(3), 493–502.Google Scholar
  16. 16.
    Ryan, E.P. (1982). Optimal Relay and Saturating Control System Synthesis, Peter Peregrinus Ltd. London.Google Scholar
  17. 17.
    Sira-Ramirez, H. (1989). Sliding regimes in general nonlinear systems: A relative degree approach. International Journal of Control, 50 1487–1506.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Slotine, J.-J. E. and Li, W. (1991). Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ.zbMATHGoogle Scholar
  19. 19.
    Utkin, V.I. (1992). Sliding Modes in Control Optimization. Springer Verlag, Berlin, Heidelberg.zbMATHGoogle Scholar
  20. 20.
    Wu, Y., Yu, X. and Man, Z. (1998). Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letters, 34(5), 281–288.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Xia, Y., Yu, X., Ledwich, G. and Oghanna, W. (2000). Self-tuning relay control design for MIMO systems with fast convergence. IEEE Trans. Circuits and Systems — Part I, 47(10), 1548–1552.CrossRefGoogle Scholar
  22. 22.
    Xia, Y., Yu, X. and Oghanna, W. (2000). Adaptive robust fast control for induction motors. IEEE Trans. Industrial Electronics, 47(4), 854–862.CrossRefGoogle Scholar
  23. 23.
    Xu, J.-X. and Cao, W. J. (2000). Synthesized sliding mode control of a single-link flexible robot. International Journal of Control, 73(3), 197–209.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yu, X. and Man, Z. (1996). Model reference adaptive control systems with terminal sliding modes. International Journal of Control, 64(6), 1165–1176.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Yu, X. and Man, Z. (1998). Multi-input uncertain linear systems with terminal sliding mode control. Automatica, 34(3), 389–392.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Yu, X. and Man, Z. (1996). On finite time convergence: Terminal sliding modes. Proceedings of 1996 International Workshop on Variable Structure Systems, 164–168, Tokyo Japan.Google Scholar
  27. 27.
    Yu, X. and Xu, J.-X. (1996). A novel nonlinear signal derivative estimator. Electronics Letters, 31(16), 445–1447.Google Scholar
  28. 28.
    Zak, M. (1989). Terminal attractors in neural networks. Neural Networks, 2, 259–274.CrossRefGoogle Scholar
  29. 29.
    Zinober, A. S. I. (1993). Variable Structure and Lyapunov Control. Springer-Verlag, London.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Xinghuo Yu
    • 1
  • Zhihong Man
    • 2
  1. 1.Faculty of Informatics and CommunicationCentral Queensland UniversityRockhamptonAustralia
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingapore

Personalised recommendations