Skip to main content

Variable Structure Systems Theory in Computational Intelligence

  • Chapter
  • First Online:
Variable Structure Systems: Towards the 21st Century

Abstract

Intelligence in the form of well-organized solutions to the ill-posed problems has been the primary focus of many engineering applications. The ever-increasing developments in data fusion, sensor technology and high-speed microprocessors made the design in digital domain with high performance. A natural consequence of the progression during the last few decades is the emergence of computationally intelligent systems. Neural networks and fuzzy inference systems constitute the core approaches of computational intelligence, whose methods have extensively been used in the applications extending from image/pattern recognition to identification and control of nonlinear systems. This chapter is devoted to the analysis and design of learning strategies in the context of variable structure systems. Several approaches are discussed in detail with special emphasis on the sliding mode control of nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jang J.-S.R., Sun C.-T., Mizutani E. (1997) Neuro-Fuzzy and Soft Computing, PTR Prentice-Hall

    Google Scholar 

  2. Berenji H. (1992) Fuzzy and Neural Control, In: P. J. Antsaklis, and K. M. Passino (Eds.), An Introduction to Intelligent and Autonomous Control, 215–236, Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  3. Hornik K. (1989) Multilayer Feedforward Networks are Universal Approximators, Neural Networks, 2, 359–366

    Article  Google Scholar 

  4. Funahashi, K. (1989) On the Approximate Realization of Continuous Mappings by Neural Networks, Neural Networks, 2, 183–192

    Article  Google Scholar 

  5. Cybenko G. (1989) Approximation by Superpositions of a Sigmoidal Function, Mathematics of Control, Signals, and Systems, 2, 303–314

    Article  MATH  MathSciNet  Google Scholar 

  6. Haykin S. (1994) Neural Networks, Macmillan College Printing Company, New Jersey

    MATH  Google Scholar 

  7. Gupta M.M., Rao D.H. (1993) Dynamical Neural Units with Applications to the Control of Unknown Nonlinear Systems, Journal of Intelligent and Fuzzy Systems, 1,1, 73–92

    Google Scholar 

  8. Wang Y-J., Lin C-T. (1998) Runge-Kutta Neural Network for Identification of Dynamical Systems in High Accuracy, IEEE Transactions on Neural Networks, 9,2, 294–307, March

    Article  Google Scholar 

  9. Zadeh L.A. (1965) Fuzzy Sets, Information and Control, 8, 338–353

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang L. (1997) A Course in Fuzzy Systems and Control, PTR Prentice-Hall

    Google Scholar 

  11. Takagi T., and Sugeno M. (1985) Fuzzy Identification of Systems and Its Applications to Modeling and Control, IEEE Transactions on Systems, Man, and Cybernetics, 15,1, 116–132, January

    MATH  Google Scholar 

  12. Rumelhart D.E., Hinton G.E., and Williams R.J. (1986) Learning Internal Representations by Error Propagation, in D. E. Rumelhart and J. L. McClelland, (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 318–362, MIT Press, Cambridge, M.A.

    Google Scholar 

  13. Hagan M. T., M. B. Menhaj (1994) Training Feedforward Networks with the Marquardt Algorithm, IEEE Transactions on Neural Networks, 5,6, 989–993, November

    Article  Google Scholar 

  14. Emelyanov S. V. (1959) Control of First Order Delay Systems by means of an Astatic Controller and Nonlinear Correction, Automat. Remote Contr., 8, 983–991

    Google Scholar 

  15. Utkin V. I. (1977) Variable Structure Systems with Sliding Modes, IEEE Transactions Automatic Control, 22, 212–222

    Article  MATH  MathSciNet  Google Scholar 

  16. Young K. D., Utkin V. I., Ozguner U. (1999) A Control Engineer’s Guide to Sliding Mode Control, IEEE Transactions on Control Systems Technology, 7,3, 328–342, May

    Article  Google Scholar 

  17. Hung J.Y., Gao W., Hung J. C. (1993) Variable Structure Control: A survey, IEEE Transactions on Industrial Electronics, 40,1, 1–9, February

    Google Scholar 

  18. Zinober A.S.I. (1994) (Ed), Variable Structure and Lyapunov Control, Springer-Verlag

    Google Scholar 

  19. Young K.K. (1993) (Ed), Variable Structure Control for Robotics and Aerospace Systems, Elsevier-Science

    Google Scholar 

  20. Utkin V.I. (1992) Sliding Modes in Control Optimization, Springer Verlag, New York

    MATH  Google Scholar 

  21. Young K.D. (1978) Controller Design for a Manipulator Using Theory of Variable Structure Systems, IEEE Transactions on Systems, Man, and Cybernetics, SMC-8, 210–218

    Google Scholar 

  22. Slotine J.J.E., Sastry S.S. (1983) Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulators, International Journal of Control, 38, 465–492

    Article  MATH  MathSciNet  Google Scholar 

  23. Hashimoto H., Maruyama K., Harashima F. (1987) A Microprocessor Based Robot Manipulator Control with Sliding Mode, IEEE Transactions on Industrial Electronics, 34, 11–18

    Article  Google Scholar 

  24. Wijesoma S.W. (1990) Robust Trajectory Following of Robots Using Computed Torque Structure with VSS, International Journal of Control, 52, 935–962

    Article  MATH  Google Scholar 

  25. Denker A., Kaynak O. (1994) Application of VSC in Motion Control Systems, in Variable Structure and Lyapunov Control, A.S.I. Zinober (Ed.), Springer-Verlag, Chapter 17, 365–383

    Google Scholar 

  26. Kaynak O., Harashima F., Hashimoto H. (1984) Variable Structure Systems Theory, as applied to Sub-time Optimal Position Control with an Invariant Trajectory, Trans. IEE of Japan, Sec. E, 104, 47–52

    Google Scholar 

  27. Bartoszewicz A. (1988) On the Robustness of Variable Structure Systems in the Presence of Measurement Noise, Proc. IEEE Industrial Electronics Society Annual Conference, IECON’99, Aachen, Germany, 1733–1736, Aug. 31–Sept. 4

    Google Scholar 

  28. Slotine J.J.E., Li W. (1991) Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall

    MATH  Google Scholar 

  29. Elmali, H., Olgac N. (1992) Robust Output Tracking Control of Nonlinear MIMO Systems via Sliding Mode Technique, Automatica, 28, 145–151

    Article  MathSciNet  Google Scholar 

  30. Izosimov D. B., Utkin V. I. (1981) On Equivalence of Systems with Large Coefficients and Systems with Nonlinear Control, Automation and Remote Control, 11, 189–191

    Google Scholar 

  31. Tunay I., Kaynak O. (1996) Provident Control of an Electrohydraulic Servo with Experimental Results, Mechatronics, 6,3, 249–260

    Article  Google Scholar 

  32. Tunay I., Kaynak O. (1995) A New Variable Structure Controller for Affine Nonlinear Systems with Non-matching Uncertainties, International Journal of Control, 62,4, 917–939

    Article  MATH  MathSciNet  Google Scholar 

  33. Yen J., Langari R. (1999) Fuzzy Logic, PTR Prentice-Hall, New Jersey

    Google Scholar 

  34. Passino K.M., Yurkovich S. (1998) Fuzzy Control, Addison-Wesley, California

    Google Scholar 

  35. Wang L.-X. (1994) Adaptive Fuzzy Systems and Control, Design and Stability Analysis, PTR Prentice-Hall

    Google Scholar 

  36. Efe M.O., Kaynak O., Wilamowski B.M. (2000) Creating a Sliding Mode in a Motion Control System by Adopting a Dynamic Defuzzification Strategy in an Adaptive Neuro Fuzzy Inference System, Proc. IEEE Int. Conf. on Industrial Electronics, Control and Instrumentation, IECON-2000, Nagoya, Japan, 894–899, Oct. 22–28

    Google Scholar 

  37. Efe M.O., Kaynak O. (1999) A Comparative Study of Neural Network Structures in Identification of Nonlinear Systems, Mechatronics, 9,3, 287–300

    Article  MathSciNet  Google Scholar 

  38. Sanner R.N., Slotine J.J.E. (1992) Gaussian Networks for Direct Adaptive Control, IEEE Transactions on Neural Networks, 3,6, 837–863

    Article  Google Scholar 

  39. Sira-Ramirez H., Colina-Morles E. (1995) A Sliding Mode Strategy for Adaptive Learning in Adalines, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 42,12, 1001–1012, December

    Article  Google Scholar 

  40. Hsu L., Real J.A. (1997) Dual Mode Adaptive Control Using Gaussian Neural Networks, Proc. of the 36th Conference on Decision and Control, (CDC), New Orleans, LA, 4032–4037

    Google Scholar 

  41. Hsu L., Real J.A. (1999) Dual Mode Adaptive Control, Proc. of the IFAC’99 World Congress, Beijing, K, 333–337

    Google Scholar 

  42. Yu X., Zhihong M., Rahman S.M.M. (1998) Adaptive Sliding Mode Approach for Learning in a Feedforward Neural Network, Neural Computing & Applications, 7, 289–294

    Article  MATH  Google Scholar 

  43. Parma G.G., Menezes B.R., Braga A.P. (1998) Sliding Mode Algorithm for Training Multilayer Artificial Neural Networks, Electronics Letters, 34,1, 97–98, January

    Article  Google Scholar 

  44. Sira-Ramirez H., Colina-Morles E., Rivas-Echevverria F. (2000) Sliding Mode-Based Adaptive Learning in Dynamical-Filter-Weights Neurons, International Journal of Control, 73,8, 678–685

    Article  MATH  MathSciNet  Google Scholar 

  45. Efe M.O., Kaynak O., Yu X. (2000) Sliding Mode Control of a Three Degrees of Freedom Anthropoid Robot by Driving the Controller Parameters to an Equivalent Regime, Transactions of the ASME: Journal of Dynamic Systems, Measurement and Control, 122,4, 632–640, December

    Article  Google Scholar 

  46. Efe M.O., Kaynak O. (2000) On Stabilization of Gradient Based Training Strategies for Computationally Intelligent Systems, IEEE Transactions on Fuzzy Systems, 8,5, 564–575, October

    Article  Google Scholar 

  47. Efe M.O., Kaynak O., Wilamowski B.M. (2000) Stable Training of Computationally Intelligent Systems By Using Variable Structure Systems Technique, IEEE Transactions on Industrial Electronics, 47,2, 487–496, April

    Article  Google Scholar 

  48. Kaynak O., Erbatur K., Ertugrul M. (2001) The Fusion of Computationally Intelligent Methodologies and Sliding-Mode Control-A Survey, IEEE Transactions on Industrial Electronics, 48,1, 4–17, February

    Article  Google Scholar 

  49. Efe M.O. (2000) Variable Structure Systems Theory Based Training Strategies for Computationally Intelligent Systems, Ph.D. Dissertation, Bogazici University

    Google Scholar 

  50. Yu X. Efe M.O., Kaynak O. (2001) A Backpropagation Learning Framework for Feedforward Neural Networks, in Proc. of the 2001 IEEE Int. Symposium on Circuits and Systems (ISCAS’01), III, pp. 700–702, May 6–9, Sydney, Aust

    Google Scholar 

  51. Zhao Y. (1996) On-line Neural Network Learning Algorithm with Exponential Convergence Rate, Electronic Letters, 32,15, 1381–1382, July

    Article  Google Scholar 

  52. Bersini H., Gorrini V. (1997) A Simplification of the Backpropagation Through Time Algorithm for Optimal Neurocontroller, IEEE Transactions Neural Networks, 8,2, 437–441, March

    Article  Google Scholar 

  53. Erbatur K., Kaynak O., Sabanovic A. (1999) A Study on Robustness Property of Sliding Mode Controllers: A Novel Design and Experimental Investigations, IEEE Transactions on Industrial Electronics, 46,5, 1012–1018

    Article  Google Scholar 

  54. Roy R.G., Olgac N. (1997) Robust Nonlinear Control via Moving Sliding Surfaces-n-th Order Case, Proc. of the 36th Conference on Decision and Control, San Diego, California, U.S.A., December 943–948

    Google Scholar 

  55. Yilmaz C., Hurmuzlu Y. (2000) Eliminating the Reaching Phase from Variable Structure Control, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 122,4, 753–757, December

    Article  Google Scholar 

  56. Hwang Y.R., Tomizuka M. (1994) Fuzzy Smoothing Algorithms for Variable Stucture Systems, IEEE Transactions on Fuzzy Systems, 2,4, 277–284

    Article  Google Scholar 

  57. Choi S.B., Kim M.S. (1997) New Discrete-Time Fuzzy-Sliding-Mode Control with Application to Smart Structures, Journal of Guidance Control and Dynamics, 20,5, 857–864

    Article  MATH  Google Scholar 

  58. Erbatur K., Kaynak O., A. Sabanovic (1996) I. Rudas, Fuzzy Adaptive Sliding Mode Control of a Direct Drive Robot, Robotics and Autonomous Systems, 19,2, 215–227

    Article  Google Scholar 

  59. Chen C.S., Chen W.L. (1998) Robust Adaptive Sliding-Mode Control Using Fuzzy Modeling for an Inverted-Pendulum System, IEEE Transactions on Industrial Electronics, 45,2, 297–306

    Article  Google Scholar 

  60. Yu X., Man Z.H., Wu B.L. (1998) Design of Fuzzy Sliding-Mode Control Systems, Fuzzy Sets and Systems, 95,3, 295–306

    Article  MATH  MathSciNet  Google Scholar 

  61. Yoo B., Ham W. (1998) Adaptive Fuzzy Sliding Mode Control of Nonlinear System, IEEE Transactions on Fuzzy Systems, 6,2, 315–321

    Article  Google Scholar 

  62. Ha Q.P. (1996) Robust Sliding Mode Controller with Fuzzy Tuning, Electronics Letters, 32,17, 1626–1628

    Article  MathSciNet  Google Scholar 

  63. Ha Q.P. (1997) Sliding Performance Enhancement with Fuzzy Tuning, Electronics Letters, 33,16, 1421–1423

    Article  MathSciNet  Google Scholar 

  64. Ertugrul M., Kaynak O. (2000) Neuro Sliding Mode Control of Robotic Manipulators, Mechatronics, 10,1–2, 243–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Efe, M.Ö., Kaynak, O., Yu, X. (2002). Variable Structure Systems Theory in Computational Intelligence. In: Yu, X., Xu, JX. (eds) Variable Structure Systems: Towards the 21st Century. Lecture Notes in Control and Information Sciences, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45666-X_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45666-X_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42965-4

  • Online ISBN: 978-3-540-45666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics